Electrical Conductivity Structure of the Crust and Upper Mantle Along the Profile Maqên-Lanzhou-Jingbian in the Northeastern Margin of the Qinghai-Tibet Plateau

2005 ◽  
Vol 48 (5) ◽  
pp. 1293-1306 ◽  
Author(s):  
Ji TANG ◽  
Yan ZHAN ◽  
Guo-Ze ZHAO ◽  
Qian-Hui DENG ◽  
Ji-Jun WANG ◽  
...  
1983 ◽  
pp. 288-302 ◽  
Author(s):  
H. Jödicke ◽  
J. Untiedt ◽  
W. Olgemann ◽  
L. Schulte ◽  
V. Wagenitz

Episodes ◽  
2005 ◽  
Vol 28 (4) ◽  
pp. 263-273 ◽  
Author(s):  
Rui Gao ◽  
Zhanwu Lu ◽  
Qiusheng Li ◽  
Ye Guan ◽  
Jisheng Zhang ◽  
...  

Author(s):  
Honglei Li ◽  
Jian Fang

As the most active plateau on the Earth, the Qinghai-Tibet Plateau has a complex crust-mantle structure. Knowledge of the distribution of such a structure provides information for understanding the underlying geodynamic processes. We obtains a three-dimensional density model of crustal and upper mantle beneath Qinghai-Tibet plateau and its surrounding areas from the residual geoid anomalies using the Earth Gravitational Model (EGM) 2008. We estimate a refined density model by iterations, using an initial density contrast model. We confirm that the EGM2008 mission products can be used to constrain the crust-mantle density structures. Our major findings are: (1). At 300-400 km depth, high-D anomalies terminate around Jinsha River Suture (JRS) in the central TP, suggesting that the Indian plate has been reached over the Bangong Nujiang Suture (BNS) and almost reach to the JRS. (2). On the eastern TP, low-D anomalies at the depth of 0-300 km together with high-D anomalies at 400-670 km further verified the current eastward subduction of Indian plate. The ongoing subduction provides forces to the occurrences of frequent earthquakes and volcano. (3). At 600 km depth, low-D anomalies inside the TP illustrate the existence of hot weak material beneath there, contributing to the external material inward-thrusting.


2021 ◽  
Vol 43 (5) ◽  
pp. 165-180
Author(s):  
I. Yu. Nikolaev ◽  
T. K. Burakhovych ◽  
A. M. Kushnir ◽  
Ye. M. Sheremet

The three-dimensional geoelectric model of the Earth’s crust and upper mantle of the Kerch Peninsula has been built for the first time based on the results of experimental observations of the Earth’s low-frequency electromagnetic field, carried out in 2007—2013 by the Institutes of the National Academy of Sciences of Ukraine. Its physical and geological interpretation and detailing of the near-surface part were carried out according to the data of the audiomagnetotelluric sounding method to study the deep structure of the Kerch iron ore basin. To the east of the Korsak-Feodosiya fault along the southern part of the Indolo-Kuban trough (in the north of the South Kerch and almost under the entire North Kerch zones), a low-resistance anomaly (ρ=1 Ohm∙m) was found at depths from 2.5 km to 12 km about 20 km wide. Its eastern part is located in the consolidated Earth’s crust and is galvanically connected with surface sedimentary strata, while the western part is completely in sedimentary deposits. The anomaly covers the territory of the Kerch iron ore basin and occurrences of mud volcanism. The characteristics of the upper part of the layered section of the Kerch Peninsula in the interval of the first hundreds of meters were obtained from the results of one-dimensional inversion of the audiomagnetotelluric sounding data (frequency range 8—4000 Hz). It is shown that the first 15 m of the section, corresponding to Quaternary deposits, have resistivity values up to 1 Ohm∙m. Below, in the Neogene sediments, the electrical resistance increases to values of 5 Ohm∙m and more. Both horizontally and vertically, the distribution of resistivity values has a variable character, manifesting as a thin-layered structure with low resistivity values. Possibly, such areas have a direct connection with the channel for transporting hummock material and gases. A connection is assumed between the low-resistivity thin-layered near-surface areas, a deep anomaly of electrical conductivity in the upper part of the Earth’s crust, and the likely high electrical conductivity of rocks at the depths of the upper mantle with iron ore deposits, as well as the manifestation of mud volcanism. The heterogeneity of the crustal and mantle highly conductive layers may indicate a high permeability of the contact zones for deep fluids.


Sign in / Sign up

Export Citation Format

Share Document