Drosophila caspases involved in developmentally regulated programmed cell death of peptidergic neurons during early metamorphosis

2010 ◽  
Vol 519 (1) ◽  
pp. 34-48 ◽  
Author(s):  
Gyunghee Lee ◽  
Zixing Wang ◽  
Ritika Sehgal ◽  
Chun-Hong Chen ◽  
Keiko Kikuno ◽  
...  
2020 ◽  
Vol 107 (4) ◽  
pp. 577-586
Author(s):  
Georgia L. Denbigh ◽  
Adrian N. Dauphinee ◽  
Meredith S. Fraser ◽  
Christian R. Lacroix ◽  
Arunika H. L. A. N. Gunawardena

2021 ◽  
Vol 12 ◽  
Author(s):  
Junko Tsuji ◽  
Travis Thomson ◽  
Christine Brown ◽  
Subhanita Ghosh ◽  
William E. Theurkauf ◽  
...  

PIWI-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, ∼27 nt long, map antisense to transposons, are oxidation resistant, exhibit a 5’ uridine bias, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 19 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed coincident with the commitment of the muscles undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is correlated with the repression of several retrotransposons and the induction of specific DNA transposons. The developmentally-regulated changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.


1998 ◽  
Vol 37 (2) ◽  
pp. 265-280 ◽  
Author(s):  
John Ewer ◽  
Chiou-Miin Wang ◽  
Kathleen A. Klukas ◽  
Karen A. Mesce ◽  
James W. Truman ◽  
...  

2021 ◽  
Author(s):  
Junko Tsuji ◽  
Travis Thomson ◽  
Christine Brown ◽  
Subhanita Ghosh ◽  
William E. Theurkauf ◽  
...  

AbstractPiWi-interacting RNAs (piRNAs) are small single-stranded RNAs that can repress transposon expression via epigenetic silencing and transcript degradation. They have been identified predominantly in the ovary and testis, where they serve essential roles in transposon silencing in order to protect the integrity of the genome in the germline. The potential expression of piRNAs in somatic cells has been controversial. In the present study we demonstrate the expression of piRNAs derived from both genic and transposon RNAs in the intersegmental muscles (ISMs) from the tobacco hawkmoth Manduca sexta. These piRNAs are abundantly expressed, are ~27 nt long, map antisense to transposons, are oxidation resistant, exhibit a uridine bias at their first nucleotide, and amplify via the canonical ping-pong pathway. An RNA-seq analysis demonstrated that 20 piRNA pathway genes are expressed in the ISMs and are developmentally regulated. The abundance of piRNAs does not change when the muscles initiate developmentally-regulated atrophy, but are repressed when cells become committed to undergo programmed cell death at the end of metamorphosis. This change in piRNA expression is associated with the targeted repression of several retrotransposons and the induction of specific DNA transposons. The developmental changes in the expression of piRNAs, piRNA pathway genes, and transposons are all regulated by 20-hydroxyecdysone, the steroid hormone that controls the timing of ISM death. Taken together, these data provide compelling evidence for the existence of piRNA in somatic tissues and suggest that they may play roles in developmental processes such as programmed cell death.Author SummarypiRNAs are a class of small non-coding RNAs that suppress the expression of transposable elements, parasitic DNA that if reintegrated, can harm the integrity of the host genome. The expression of piRNAs and their associated regulatory proteins has been studied predominantly in germ cells and some stem cells. We have found that they are also expressed in skeletal muscles in the moth Manduca sexta that undergo developmentally-regulated atrophy and programmed cell death at the end of metamorphosis. The expression of transposons becomes deregulated when the muscles become committed to die, which may play a functional role in the demise of the cell by inducing genome damage. piRNA-mediated control of transposons may represent a novel mechanism that contributes to the regulated death of highly differentiated somatic cells.


Botany ◽  
2018 ◽  
Vol 96 (4) ◽  
pp. 235-247 ◽  
Author(s):  
Gaolathe Rantong ◽  
Arunika H.L.A.N. Gunawardena

Perforation formation in Aponogeton madagascariensis (Mirb.) H.Bruggen (lace plant) is an excellent model for studying developmentally regulated programmed cell death (PCD). In this study, we isolated and identified two lace plant vacuolar processing enzymes (VPEs) and investigated their involvement in PCD and throughout leaf development. Lace plant VPE transcript levels were determined during seven different stages of leaf development. PCD and non-PCD cells from “window” stage leaves (in which perforations are forming) were separated through laser-capture microscopy and their transcript levels were also determined. VPE activity was also studied between the cell types, through a VPE activity-based probe JOPD1. Additionally, VPE transcript levels were studied in plants treated with an ethylene biosynthesis inhibitor, aminoethoxyvinylglycine (AVG). The two isolated VPEs, AmVPE1 and AmVPE2, are vegetative type VPEs. AmVPE1 had higher transcript levels during a pre-perforation developmental stage, immediately prior to visible signs of PCD. AmVPE2 transcript levels were higher later during window and late window stages. Both VPEs had higher transcript and activity levels in PCD compared with the non-PCD cells. AVG treatment inhibited PCD and associated increases in VPE transcript levels. Our results suggested that VPEs are involved in the execution of the ethylene-related PCD in the lace plant.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Nathan M. Rowarth ◽  
Bruce A. Curtis ◽  
Anthony L. Einfeldt ◽  
John M. Archibald ◽  
Christian R. Lacroix ◽  
...  

Abstract Background The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging “imperforate leaves” do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called “PCD cells” that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called “NPCD cells” retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. Results Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. Conclusions RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.


Sign in / Sign up

Export Citation Format

Share Document