scholarly journals High refractive index dielectric nanoparticles for optically‐enhanced activity of water‐splitting photoanodes

ChemPhotoChem ◽  
2021 ◽  
Author(s):  
Luc Driencourt ◽  
Benjamin Gallinet ◽  
Catherine Elisabeth Housecroft ◽  
Sören Fricke ◽  
Edwin C. Constable
2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Author(s):  
Zhiyou Li ◽  
Zao Yi ◽  
Tinting Liu ◽  
Li Liu ◽  
Xifang Chen ◽  
...  

In this paper, we designed a three-band narrowband perfect absorber based on Bulk Dirac semimetallic (BDS) metamaterials. The absorber consists of a hollow Dirac semimetallic layer above, a gold layer...


2021 ◽  
Author(s):  
Nicole Ziegenbalg ◽  
Ruth Lohwasser ◽  
Giovanni D’Andola ◽  
Torben Adermann ◽  
Johannes Christopher Brendel

Polyethersulfones are an interesting class of polymers for industrial applications due to their unusual properties such as a high refractive index, flame-retardant properties, high temperature and chemical resistance. The common...


2021 ◽  
Vol 27 (5) ◽  
pp. 1-7
Author(s):  
Gopikrishnan Gopalakrishnan Meena ◽  
Joel G. Wright ◽  
Aaron R. Hawkins ◽  
Holger Schmidt

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4421
Author(s):  
Ángela Barreda ◽  
Pablo Albella ◽  
Fernando Moreno ◽  
Francisco González

High refractive index dielectric (HRID) nanoparticles are a clear alternative to metals in nanophotonic applications due to their low losses and directional scattering properties. It has been demonstrated that HRID dimers are more efficient scattering units than single nanoparticles in redirecting the incident radiation towards the forward direction. This effect was recently reported and is known as the “near zero-backward” scattering condition, attained when nanoparticles forming dimers strongly interact with each other. Here, we analyzed the electromagnetic response of HRID isolated nanoparticles and aggregates when deposited on monolayer and graded-index multilayer dielectric substrates. In particular, we studied the fraction of radiation that is scattered towards a substrate with known optical properties when the nanoparticles are located on its surface. We demonstrated that HRID dimers can increase the radiation emitted towards the substrate compared to that of isolated nanoparticles. However, this effect was only present for low values of the substrate refractive index. With the aim of observing the same effect for silicon substrates, we show that it is necessary to use a multilayer antireflection coating. We conclude that dimers of HRID nanoparticles on a graded-index multilayer substrate can increase the radiation scattered into a silicon photovoltaic wafer. The results in this work can be applied to the design of novel solar cells.


Author(s):  
Muzhang Huang ◽  
Lieyang Li ◽  
Yingjie Feng ◽  
Xiaohui Zhao ◽  
Wei Pan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document