Investigation of endogenous blood lipids components that contribute to matrix effects in dried blood spot samples by liquid chromatography-tandem mass spectrometry

2012 ◽  
Vol 5 (8) ◽  
pp. 710-715 ◽  
Author(s):  
Omnia A. Ismaiel ◽  
Rand G. Jenkins ◽  
H. Thomas Karnes
2017 ◽  
Vol 52 (2) ◽  
pp. 125-134
Author(s):  
Matías N Baldo ◽  
Emmanuel Angeli ◽  
Natalia C Gareis ◽  
Gabriel A Hunzicker ◽  
Marcelo C Murguía ◽  
...  

A relative bioavailability study (RBA) of two phenytoin (PHT) formulations was conducted in rabbits, in order to compare the results obtained from different matrices (plasma and blood from dried blood spot (DBS) sampling) and different experimental designs (classic and block). The method was developed by liquid chromatography tandem-mass spectrometry (LC-MS/MS) in plasma and blood samples. The different sample preparation techniques, plasma protein precipitation and DBS, were validated according to international requirements. The analytical method was validated with ranges 0.20–50.80 and 0.12–20.32 µg ml−1, r > 0.999 for plasma and blood, respectively. Accuracy and precision were within acceptance criteria for bioanalytical assay validation (< 15 for bias and CV% and < 20 for limit of quantification (LOQ)). PHT showed long-term stability, both for plasma and blood, and under refrigerated and room temperature conditions. Haematocrit values were measured during the validation process and RBA study. Finally, the pharmacokinetic parameters (Cmax, Tmax and AUC0–t) obtained from the RBA study were tested. Results were highly comparable for matrices and experimental designs. A matrix correlation higher than 0.975 and a ratio of (PHT blood) = 1.158 (PHT plasma) were obtained. The results obtained herein show that the use of classic experimental design and DBS sampling for animal pharmacokinetic studies should be encouraged as they could help to prevent the use of a large number of animals and also animal euthanasia. Finally, the combination of DBS sampling with LC-MS/MS technology showed to be an excellent tool not only for therapeutic drug monitoring but also for RBA studies.


2018 ◽  
Vol 18 (3) ◽  
pp. 544 ◽  
Author(s):  
Supandi Supandi ◽  
Yahdiana Harahap ◽  
Harmita Harmita ◽  
Rizka Andalusia

6-Mercaptopurine is a chemotherapeutic agent of the antimetabolite class. This study aims to analyze simultaneous validation of 6-mercaptopurine (6-MP), 6-methylmercaptopurine (6-MMP), and 6-thioguanosine-5’-monophosphate (6-TGMP) in dried blood spot (DBS) using ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). An accurate volume of 60 μL blood was spotted onto DBS-CAMAG paper and then extracted using methanol 90% (v/v) containing an internal standard of 5-fluorouracil (5-FU). Separation was performed using a Waters Acquity UPLC BEH AMIDA column 1.7 μm (2.1 x 100 mm) with a mobile phase mixture of 0.2% (v/v) formic acid in water−0.1% (v/v) formic acid in acetonitrile-methanol with gradient elution and flow rate of 0.2 mL/min. Mass detection was done using Waters Xevo TQD with positive electrospray ionization (ESI) for 6-MP, 6-MMP, 6-TGMP and negative ESI for 5-FU, in multiple reaction monitoring mode. Detection rates of 6-MP, 6-MMP, 6-TGMP and 5-FU were m/z 153.09 > 119.09; 167.17 > 126.03; 380.16 > 168.00); 129.09 > 42.05, respectively. This method is linear across the range 25.5–1020 ng/mL for 6-MP, 6-MMP and 6-TGMP. This method is valid for the in vitro simultaneous analysis of 6-MP, 6-MMP and 6-TGMP in DBS, based on European Medicine Agency guidelines.


Sign in / Sign up

Export Citation Format

Share Document