scholarly journals Characterization of bacterial artificial chromosome transgenic mice expressing mCherry fluorescent protein substituted for the murine smooth muscle α-actin gene

genesis ◽  
2010 ◽  
Vol 48 (7) ◽  
pp. 457-463 ◽  
Author(s):  
John J. Armstrong ◽  
Irina V. Larina ◽  
Mary E. Dickinson ◽  
Warren E. Zimmer ◽  
Karen K. Hirschi
2004 ◽  
Vol 482 (2) ◽  
pp. 123-141 ◽  
Author(s):  
Hanns Ulrich Zeilhofer ◽  
Barbara Studler ◽  
Dimitrula Arabadzisz ◽  
Claude Schweizer ◽  
Seifollah Ahmadi ◽  
...  

2002 ◽  
Vol 282 (5) ◽  
pp. H1793-H1803 ◽  
Author(s):  
Joseph M. Miano ◽  
Chad M. Kitchen ◽  
Jiyuan Chen ◽  
Kathleen M. Maltby ◽  
Louise A. Kelly ◽  
...  

Defining regulatory elements governing cell-restricted gene expression can be difficult because cis-elements may reside tens of kilobases away from start site(s) of transcription. Artificial chromosomes, which harbor hundreds of kilobases of genomic DNA, preserve a large sequence landscape containing most, if not all, regulatory elements controlling the expression of a particular gene. Here, we report on the use of a bacterial artificial chromosome (BAC) to begin understanding the in vivo regulation of smooth muscle calponin (SM-Calp). Long and accurate polymerase chain reaction, sequencing, and in silico analyses facilitated the complete sequence annotation of a BAC harboring human SM-Calp (hSM-Calp). RNase protection, in situ hybridization, Western blotting, and immunohistochemistry assays showed the BAC clone faithfully expressed hSM-Calp in both cultured cells and transgenic mice. Moreover, expression of hSM-Calp mirrored that of endogenous mouse SM-Calp suggesting that all cis-regulatory elements governing hSM-Calp expression in vivo were contained within the BAC. These BAC mice represent a new model system in which to systematically assess regulatory elements governing SM-Calp transcription in vivo.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Ruth M Castellanos Rivera ◽  
Ellen S. Pentz ◽  
Kenneth W. Gross ◽  
Silvia Medrano ◽  
Jing Yu ◽  
...  

RBP-J , the major downstream effector of Notch signaling, is necessary to maintain the number of juxtaglomerular (JG) cells. In addition, RBP-J regulates the plasticity of arteriolar smooth muscle cells to adopt the renin cell phenotype when homeostasis is threatened. We hypothesized that RBP-J acts as an on/off switch controlling the expression of genes that determine the renin phenotype. To determine whether RBP-J directly affects renin gene expression, we generated mice harboring a bacterial artificial chromosome (BAC) transgene with green fluorescent protein (GFP) under the control of the renin gene carrying a mutation in its RBP-J- binding site (Mut-BAC). Mut-BAC mice had markedly reduced GFP expression to 12.9 % ±0.01 (n=3) of the control (Wt-BAC) and a diminished response to homeostatic challenges: mut-BAC mice had a reduced number of GFP positive JG areas per total number of glomeruli (Wt-BAC: 25.1 % ±3.0, n=3; Mut-BAC: 9.3 % ±1.4, n=2, p<0.02) and no GFP expression along the arterioles. To determine whether the decrease in the number of JG cells in mice lacking RBP-J (cKO) was due to a diminished endowment of renin progenitor cells, we traced the fate of cells derived from the renin lineage by generating mice ( RBP-J fl/fl ; Ren1d +/cre ; R26R +/- ) in which cells lacking RBP-J simultaneously expressed β-galactosidase (β-gal). The pattern of β-gal in cKO and control kidneys was identical, indicating that cells derived from the renin lineage did not die but instead changed their phenotype. Next we investigated the phenotype adopted by the cells derived from the renin lineage. Expression of α-smooth muscle actin and smoothelin (a marker of mature smooth muscle) was significantly decreased to 41 % ±7.0 (n=2) and 44 % ±8.8 (n=2) respectively with respect to controls (p<0.01). In addition, mutant JG cells in vivo did not express genes characteristic of the renin phenotype such as renin, calponin1, Nfat and Akr1b7 expressing instead fibroblast-specific protein 1 indicating the adoption of a fibroblast-like phenotype. Results indicate that RBP-J directly governs a genetic program that controls the dual endocrine-contractile phenotype of the JG cell, which is crucial to maintain blood pressure and fluid-electrolyte homeostasis.


Blood ◽  
2003 ◽  
Vol 102 (8) ◽  
pp. 2856-2861 ◽  
Author(s):  
Hongmin Sun ◽  
Tony L. Yang ◽  
Angela Yang ◽  
Xixi Wang ◽  
David Ginsburg

Abstract Coagulation factor V (FV) is a central regulator of the coagulation cascade. Circulating FV is found in plasma and within platelet α granules. The specific functions of these distinct FV pools are uncertain. We now report the generation of transgenic mice with FV gene expression restricted to either the liver or megakaryocyte/platelet lineage using bacterial artificial chromosome (BAC) constructs. Six of 6 independent albumin BAC transgenes rescue the neonatal lethal hemorrhage of FV deficiency. Rescued mice all exhibit liver-specific Fv expression at levels ranging from 6% to 46% of the endogenous Fv gene, with no detectable FV activity within the platelet pool. One of the 3 Pf4 BAC transgenes available for analysis also rescues the lethal FV null phenotype, with FV activity restricted to only the platelet pool (approximately 3% of the wild-type FV level). FV-null mice rescued by either the albumin or Pf4 BAC exhibit nearly normal tail bleeding times. These results demonstrate that Fv expression in either the platelet or plasma FV pool is sufficient for basal hemostasis. In addition, these findings indicate that the murine platelet and plasma FV pools are biosynthetically distinct, in contrast to a previous report demonstrating a plasma origin for platelet FV in humans.


Genomics ◽  
2000 ◽  
Vol 65 (2) ◽  
pp. 87-94 ◽  
Author(s):  
Marie-Christine Le Paslier ◽  
Raymond J. Pierce ◽  
Françoise Merlin ◽  
Hirohisa Hirai ◽  
Wenjie Wu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document