Transcription factor binding study by capillary zone electrophoretic mobility shift assay

2003 ◽  
Vol 24 (12) ◽  
pp. 96-100 ◽  
Author(s):  
Zsolt Ronai ◽  
Yan Wang ◽  
Julia Khandurina ◽  
Paul Budworth ◽  
Maria Sasvari-Szekely ◽  
...  
2021 ◽  
Author(s):  
NGUYEN HOAI NGUYEN

Abstract To comprehensively characterize the functions of a transcription factor (TF), it is required to analyze the interaction of this TF with its targeted loci. Several methods such as β-glucuronidase (GUS) or luciferase reporter, yeast one-hybrid (Y1H), chromatin-immunoprecipitation (ChIP), and electrophoretic mobility shift assay (EMSA) assays have been developed. Of these, EMSA is an in vitro method which can prove the direct interaction between TF and targeted DNA fragment. This protocol is to provide a detailed procedure for a safe EMSA assay (without using any radioisotope).


2000 ◽  
Vol 351 (3) ◽  
pp. 755-764
Author(s):  
Andrew G. WINTER ◽  
Adrian R. PIEROTTI

NRD convertase (N-arginine dibasic convertase, NRD-C) is a dibasic selective metalloprotease which cleaves on the N-terminal side of an arginine residue in a dibasic pair. Abundant in endocrine tissues, the highest levels are found in testis. The mechanism whereby NRD-C expression is regulated at the transcriptional level has been examined by reporter-gene assay and electrophoretic-mobility-shift assays. Analysis of the rat and human promoters show that they are highly conserved, containing a number of motifs which may correspond to transcription-factor binding sites. The rat promoter has been cloned into a luciferase reporter vector and analysed in a number of cell lines. Full functionality of the promoter is observed with 5′ deletions to 411bp upstream of the transcriptional start site in spermatid, prostate and pituitary cell lines. Further deletion to 101bp causes a complete loss of activity in spermatid and prostate lines. By contrast, GH3 pituitary cells display no reduction in promoter activity with deletion to 101bp of upstream sequence. A number of transcription-factor binding sites have been identified by electrophoretic-mobility-shift assays in the region 411–101; however, no differences in binding between the cell lines were observed.


2000 ◽  
Vol 78 (2) ◽  
pp. 163-170 ◽  
Author(s):  
K Ruscher ◽  
M Reuter ◽  
D Kupper ◽  
G Trendelenburg ◽  
U Dirnagl ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document