Development of the SSiB5/TRIFFID/DayCent-SOM Model to study the impact of nitrogen dynamics on carbon cycle over terrestrial surface

2021 ◽  
Author(s):  
Zheng Xiang ◽  
Yongkang Xue ◽  
Weidong Guo ◽  
Melannie Hartman ◽  
Ye Liu ◽  
...  
2021 ◽  
Author(s):  
Alexandra Gogou ◽  
Constantine Parinos ◽  
Spyros Stavrakakis ◽  
Emmanouil Proestakis ◽  
Maria Kanakidou ◽  
...  

<p>Biotic and abiotic processes that form, alter, transport, and remineralize particulate organic carbon, silicon, calcium carbonate, and other minor and trace chemical species in the water column are central to the ocean’s ecological and biogeochemical functioning and of fundamental importance to the ocean carbon cycle. Sinking particulate matter is the major vehicle for exporting carbon from the sea surface to the deep sea. During its transit towards the sea floor, most particulate organic carbon (POC) is returned to inorganic form and redistributed in the water column. This redistribution determines the surface concentration of dissolved CO<sub>2</sub>, and hence the rate at which the ocean can absorb CO<sub>2</sub> from the atmosphere. The ability to predict quantitatively the depth profile of remineralization is therefore critical to deciphering the response of the global carbon cycle to natural and human-induced changes.</p><p>Aiming to investigate the significant biogeochemical and ecological features and provide new insights on the sources and cycles of sinking particulate matter, a mooring line of five sediment traps was deployed from 2006 to 2015 (with some gap periods) at 5 successive water column depths (700, 1200, 2000, 3200 and 4300 m) in the SE Ionian Sea, northeastern Mediterranean (‘NESTOR’ site). We have examined the long-term records of downward fluxes for Corg, N<sub>tot</sub>, δ<sup>13</sup>Corg and δ<sup>15</sup>N<sub>tot</sub>, along with the associated ballast minerals (opal, lithogenics and CaCO<sub>3</sub>), lipid biomarkers, Chl-a and PP rates, phytoplankton composition, nutrient dynamics and atmospheric deposition.  </p><p>The satellite-derived seasonal and interannual variability of phytoplankton metrics (biomass and phenology) and atmospheric deposition (meteorology and air masses origin) was examined for the period of the sediment trap experiment. Regarding the atmospheric deposition, synergistic opportunities using Earth Observation satellite lidar and radiometer systems are proposed (e.g. Cloud‐Aerosol Lidar with Orthogonal Polarization - CALIOP, Moderate Resolution Imaging Spectroradiometer - MODIS), aiming towards a four‐dimensional exploitation of atmospheric aerosol loading (e.g. Dust Optical Depth) in the study area.</p><p>Our main goals are to: i) develop a comprehensive knowledge of carbon fluxes and associated mineral ballast fluxes from the epipelagic to the mesopelagic and bathypelagic layers, ii) elucidate the mechanisms governing marine productivity and carbon export and sequestration to depth and iii) shed light on the impact of atmospheric forcing and deposition in respect to regional and large scale circulation patterns and climate variability and the prevailing oceanographic processes (internal variability).</p><p>Acknowledgments</p><p>We acknowledge support of this work by the Action ‘National Network on Climate Change and its Impacts – <strong>CLIMPACT</strong>’, funded by the Public Investment Program of Greece (GSRT, Ministry of Development and Investments).</p>


2020 ◽  
Author(s):  
Lina Teckentrup ◽  
Martin G. De Kauwe ◽  
Andrew J. Pitman ◽  
Benjamin Smith

Abstract. The El Niño‐Southern Oscillation (ENSO) influences the global climate and the variability in the terrestrial carbon cycle on interannual timescales. Two different expressions of El Niño have recently been identified: (i) Central–Pacific (CP) and (ii) Eastern–Pacific (EP). Both types of El Nino are characterised by above average sea surface temperature anomalies in the respective locations. Studies exploring the impact of these expressions of El Niño on the carbon cycle have identified changes in the amplitude of the concentration of interannual atmospheric carbon dioxide (CO2) variability, as well as different lags in terrestrial CO2 release to the atmosphere following increased tropical near surface air temperature. We employ the dynamic global vegetation model LPJ–GUESS within a synthetic experimental framework to examine the sensitivity and potential long term impacts of these two expressions of El Niño on the terrestrial carbon cycle. We manipulated the occurrence of CP and EP events in two climate reanalysis datasets during the later half of the 20th and early 21st century by replacing all EP with CP and separately all CP with EP El Niño events. We found that the different expressions of El Niño affect interannual variability in the terrestrial carbon cycle. However, the effect on longer timescales was negligible for both climate reanalysis datasets. We conclude that capturing any future trends in the relative frequency of CP and EP El Niño events may not be critical for robust simulations of the terrestrial carbon cycle.


2007 ◽  
Vol 4 (3) ◽  
pp. 1877-1921 ◽  
Author(s):  
B. Schneider ◽  
L. Bopp ◽  
M. Gehlen ◽  
J. Segschneider ◽  
T. L. Frölicher ◽  
...  

Abstract. This study compares spatial and temporal variability in net primary productivity (PP) and particulate organic carbon (POC) export production (EP) from three different coupled climate carbon cycle models (IPSL, MPIM, NCAR) with observation-based estimates derived from satellite measurements of ocean colour and inverse modelling. Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006)\\nocite{Behrenfeld06} with stronger stratification (higher SSTs) leading to negative PP anomalies and vice versa. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for global PP anomalies. Two of the models also reproduce the inverse relationship between stratification (SST) and PP, especially in the equatorial Pacific. With the help of the model results we are able to explain the chain of cause and effect leading from stratification (SST) through nutrient concentrations to PP and finally to EP. There are significant uncertainties in observational PP and especially EP. Our finding of a good agreement between independent estimates from coupled models and satellite observations provides increased confidence that such models can be used as a first basis to estimate the impact of future climate change on marine productivity and carbon export.


2003 ◽  
Vol 202 (3-4) ◽  
pp. 257-273 ◽  
Author(s):  
Céline Dessert ◽  
Bernard Dupré ◽  
Jérôme Gaillardet ◽  
Louis M. François ◽  
Claude J. Allègre

2018 ◽  
Vol 373 (1760) ◽  
pp. 20170407 ◽  
Author(s):  
Paul I. Palmer

The 2015/2016 El Niño was the first major climate variation when there were a range of satellite observations that simultaneously observed land, ocean and atmospheric properties associated with the carbon cycle. These data are beginning to provide new insights into the varied responses of land ecosystems to El Niño, but we are far from fully exploiting the information embodied by these data. Here, we briefly review the atmospheric and terrestrial satellite data that are available to study the carbon cycle. We also outline recommendations for future research, particularly the closer integration of satellite data with forest biometric datasets that provide detailed information about carbon dynamics on a range of timescales. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170409 ◽  
Author(s):  
Xiangzhong Luo ◽  
Trevor F. Keenan ◽  
Joshua B. Fisher ◽  
Juan-Carlos Jiménez-Muñoz ◽  
Jing M. Chen ◽  
...  

The El Niño-Southern Oscillation exerts a large influence on global climate regimes and on the global carbon cycle. Although El Niño is known to be associated with a reduction of the global total land carbon sink, results based on prognostic models or measurements disagree over the relative contribution of photosynthesis to the reduced sink. Here, we provide an independent remote sensing-based analysis on the impact of the 2015–2016 El Niño on global photosynthesis using six global satellite-based photosynthesis products and a global solar-induced fluorescence (SIF) dataset. An ensemble of satellite-based photosynthesis products showed a negative anomaly of −0.7 ± 1.2 PgC in 2015, but a slight positive anomaly of 0.05 ± 0.89 PgC in 2016, which when combined with observations of the growth rate of atmospheric carbon dioxide concentrations suggests that the reduction of the land residual sink was likely dominated by photosynthesis in 2015 but by respiration in 2016. The six satellite-based products unanimously identified a major photosynthesis reduction of −1.1 ± 0.52 PgC from savannahs in 2015 and 2016, followed by a highly uncertain reduction of −0.22 ± 0.98 PgC from rainforests. Vegetation in the Northern Hemisphere enhanced photosynthesis before and after the peak El Niño, especially in grasslands (0.33 ± 0.13 PgC). The patterns of satellite-based photosynthesis ensemble mean were corroborated by SIF, except in rainforests and South America, where the anomalies of satellite-based photosynthesis products also diverged the most. We found the inter-model variation of photosynthesis estimates was strongly related to the discrepancy between moisture forcings for models. These results highlight the importance of considering multiple photosynthesis proxies when assessing responses to climatic anomalies. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications'.


2021 ◽  
Author(s):  
Alexander J. Winkler ◽  
Ranga B. Myneni ◽  
Markus Reichstein ◽  
Victor Brovkin

<div> <div> <div> <p>The prevailing understanding of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions suggests that it depends only on the magnitude of this forcing, not on its timing. However, a recent study (Winkler <em>et al</em>., <em>Earth System Dynamics</em>, 2019) demonstrated that the same magnitude of CO<sub>2 </sub>forcing causes considerably different responses in various Earth system models when realized following different temporal trajectories. Because the modeling community focuses on concentration-driven runs that do not represent a fully-coupled carbon-cycle-climate continuum, and the experimental setups are mainly limited to exponential forcing timelines, the effect of different temporal trajectories of CO<sub>2 </sub>emissions in the system is under-explored. Together, this could lead to an incomplete notion of the carbon-cycle response to anthropogenic CO<sub>2 </sub>emissions.</p> <p>We use the latest CMIP6 version of the Max-Planck-Institute Earth System Model (MPI-ESM1.2) with a fully-coupled carbon cycle to investigate the effect of emission timing in form of four drastically different pathways. All pathways emit an identical total of 1200 Pg C over 200 years, which is about the IPCC estimate to stay below 2 °K of warming, and the approximate amount needed to double the atmospheric CO<sub>2 </sub>concentration. The four pathways differ only in their CO<sub>2 </sub>emission rates, which include a constant, a negative parabolic (ramp-up/ramp-down), a linearly decreasing, and an exponentially increasing emission trajectory. These experiments are idealized, but designed not to exceed the observed maximum emission rates, and thus can be placed in the context of the observed system.</p> <p>We find that the resulting atmospheric CO<sub>2 </sub>concentration, after all the carbon has been emitted, can vary as much as 100 ppm between the different pathways. The simulations show that for pathways, where the system is exposed to higher rates of CO<sub>2 </sub>emissions early in the forcing timeline, there is considerably less excess CO<sub>2 </sub>in the atmosphere at the end. These pathways also show an airborne fraction approaching zero in the final decades of the simulation. At this point, the carbon sinks have reached a strength that removes more carbon from the atmosphere than is emitted. In contrast, the exponentially increasing pathway with high CO<sub>2 </sub>emission rates in the last decades of the simulation, the pathway usually studied, shows a fairly stable airborne fraction. We propose a new general framework to estimate the atmospheric growth rate of CO<sub>2 </sub>not only as a function of the emission rate, but also include the aspect of time the system has been exposed to excess CO<sub>2 </sub>in the atmosphere. As a result, the transient temperature response is a function not only of the cumulative CO<sub>2 </sub>emissions, but also of the time the system was exposed to the excess CO<sub>2</sub>. We also apply this framework to other Earth system models and observational records of CO<sub>2 </sub>concentration and emissions.</p> </div> </div> </div><div> <div> <div> <p>The Earth system is currently in a phase of increasing, nearly exponential CO<sub>2 </sub>forcing. The impact of excess CO<sub>2 </sub>exposure time could become apparent as we approach the point of maximum CO<sub>2 </sub>emission rate, affecting the achievability of the climate targets.</p> </div> </div> </div>


2018 ◽  
Vol 373 (1760) ◽  
pp. 20170302 ◽  
Author(s):  
Emanuel Gloor ◽  
Chris Wilson ◽  
Martyn P. Chipperfield ◽  
Frederic Chevallier ◽  
Wolfgang Buermann ◽  
...  

The outstanding tropical land climate characteristic over the past decades is rapid warming, with no significant large-scale precipitation trends. This warming is expected to continue but the effects on tropical vegetation are unknown. El Niño-related heat peaks may provide a test bed for a future hotter world. Here we analyse tropical land carbon cycle responses to the 2015/16 El Niño heat and drought anomalies using an atmospheric transport inversion. Based on the global atmospheric CO 2 and fossil fuel emission records, we find no obvious signs of anomalously large carbon release compared with earlier El Niño events, suggesting resilience of tropical vegetation. We find roughly equal net carbon release anomalies from Amazonia and tropical Africa, approximately 0.5 PgC each, and smaller carbon release anomalies from tropical East Asia and southern Africa. Atmospheric CO anomalies reveal substantial fire carbon release from tropical East Asia peaking in October 2015 while fires contribute only a minor amount to the Amazonian carbon flux anomaly. Anomalously large Amazonian carbon flux release is consistent with downregulation of primary productivity during peak negative near-surface water anomaly (October 2015 to March 2016) as diagnosed by solar-induced fluorescence. Finally, we find an unexpected anomalous positive flux to the atmosphere from tropical Africa early in 2016, coincident with substantial CO release. This article is part of a discussion meeting issue ‘The impact of the 2015/2016 El Niño on the terrestrial tropical carbon cycle: patterns, mechanisms and implications’.


2008 ◽  
Vol 21 (15) ◽  
pp. 3776-3796 ◽  
Author(s):  
Andrei P. Sokolov ◽  
David W. Kicklighter ◽  
Jerry M. Melillo ◽  
Benjamin S. Felzer ◽  
C. Adam Schlosser ◽  
...  

Abstract The impact of carbon–nitrogen dynamics in terrestrial ecosystems on the interaction between the carbon cycle and climate is studied using an earth system model of intermediate complexity, the MIT Integrated Global Systems Model (IGSM). Numerical simulations were carried out with two versions of the IGSM’s Terrestrial Ecosystems Model, one with and one without carbon–nitrogen dynamics. Simulations show that consideration of carbon–nitrogen interactions not only limits the effect of CO2 fertilization but also changes the sign of the feedback between the climate and terrestrial carbon cycle. In the absence of carbon–nitrogen interactions, surface warming significantly reduces carbon sequestration in both vegetation and soil by increasing respiration and decomposition (a positive feedback). If plant carbon uptake, however, is assumed to be nitrogen limited, an increase in decomposition leads to an increase in nitrogen availability stimulating plant growth. The resulting increase in carbon uptake by vegetation exceeds carbon loss from the soil, leading to enhanced carbon sequestration (a negative feedback). Under very strong surface warming, however, terrestrial ecosystems become a carbon source whether or not carbon–nitrogen interactions are considered. Overall, for small or moderate increases in surface temperatures, consideration of carbon–nitrogen interactions result in a larger increase in atmospheric CO2 concentration in the simulations with prescribed carbon emissions. This suggests that models that ignore terrestrial carbon–nitrogen dynamics will underestimate reductions in carbon emissions required to achieve atmospheric CO2 stabilization at a given level. At the same time, compensation between climate-related changes in the terrestrial and oceanic carbon uptakes significantly reduces uncertainty in projected CO2 concentration.


2020 ◽  
Author(s):  
Monica Alejandra Gomez Correa ◽  
Emilia Jarochowska ◽  
Peep Männik ◽  
Axel Munnecke ◽  
Michael Joachimski

<p>The influence of global climate and oceanographic system dynamics over biological patterns throughout Earth’s history is one of the main concerns in paleobiology. Periods that record changes in biodiversity of various magnitude are of particular interest in this field. Previous studies of major Silurian bioevents (e.g. Ireviken, Mulde and Lau) suggest that these events affected different faunas and have been correlated with positive carbon isotope (δ<sup>13</sup>C<sub>carb</sub>) excursions and positive shifts in oxygen isotopes (δ<sup>18</sup>O<sub>phos</sub>) ratios, suggesting there was a disturbance in the carbon cycle, a drop in temperature, and potential glaciations. However, the impact of the biological events has not been fully assessed, and the influence of climate change remains unclear.</p><p>Here, we focus on the Valgu event, a minor episode of proposed environmental and faunistic changes in the early Telychian, which has been recognized in Baltica and Laurentia paleocontinents by changes in conodont succession and a positive excursion in δ<sup>13</sup>C<sub>carb</sub>. In this study, we assess a limestone-marl alternation core section in Estonia deposited below the storm wave base during the Valgu event. We test for a substantial decrease in the biodiversity of conodont communities, for extent perturbation in the carbon cycle, manifest in a positive δ<sup>13</sup>C<sub>carb</sub> excursion, and an abrupt positive δ<sup>18</sup>O<sub>phos</sub> shift, which might be indicative of rapid cooling and a rapid sea-level fall typical for glacio-eustatic cycles. To this aim, we measured bulk-rock δ<sup>13</sup>C<sub>carb</sub> as well as δ<sup>18</sup>O<sub>phos</sub> in monogeneric conodont samples and analyzed the conodont diversity from the event interval.</p><p>The lower part of the investigated section is characterized by shallow-water bioclastic limestones containing green algae. On top of this facies, a pronounced hardground indicates a gap in deposition and marks the boundary between the bioclastic limestones and the overlying sediments composed of nodular limestones and marls, which were deposited below the storm wave base. They show a positive carbon shift of ca. 1.4 ‰ during the Valgu interval, but no indication of an extreme change in the conodont biodiversity is evident. Likewise, the δ<sup>18</sup>O<sub>phos</sub> in conodonts remains constant in the section, arguing against cooling or glacially-driven sea-level fluctuations as drivers for the observed changes.</p>


Sign in / Sign up

Export Citation Format

Share Document