Flame retardation and thermal degradation of flame-retarded polypropylene composites containing melamine phosphate and pentaerythritol phosphate

2008 ◽  
Vol 32 (5) ◽  
pp. 307-319 ◽  
Author(s):  
Shun Zhou ◽  
Zhengzhou Wang ◽  
Zhou Gui ◽  
Yuan Hu
2010 ◽  
Vol 178 ◽  
pp. 279-284 ◽  
Author(s):  
Shan Hu ◽  
Hui Zheng ◽  
Shang Yue Shen ◽  
Hong Chang Han ◽  
Hui Jing ◽  
...  

The melamine phosphate (MP) was synthesized from melamine and phosphate acid. Zinc oxide (ZnO) was used as a synergistic agent by adding into the MP during the synthesis process. The reaction products were characterized by Fourier transform infrared spectroscopy (FTIR). The properties of polypropylene (PP) composites containing intumescent flame retardant (IFR) additives of melamine phosphate and pentaerythritol (PER) were investigated by the limiting oxygen index (LOI), UL-94 vertical burning test, thermogravimetric analysis (TG) and scanning electron microscopy (SEM). The results indicated that the LOI value of the composites could be enhanced obviously with suitable content of ZnO. When the ZnO content was 6 wt% in MP, the LOI value reached 34.1%, which showed 10% higher than that of the composites without ZnO.


2019 ◽  
pp. 089270571986940
Author(s):  
Chuigen Guo ◽  
Ran Chen ◽  
Liping Li

The main aim of this study was to evaluate the thermal degradation and flame retardancy of straw flour (SF)-polypropylene (PP) composites and wood flour (WF)-PP composites. Biomass silica exists in SF, despite only 18 wt% loading of ammonium polyphosphate (APP); the APP in combination with biomass silica can effectively improve the flame retardancy on total heat release, heat release rate (HRR), mass loss rate, time to ignition (TTI), and limited oxygen index; it can obtain UL-94 V-0 rating, reduce the average and peak HRR by 44% and 41%, respectively, and increase the TTI by 8%. It attributes to the interaction effect between biomass silica in SF and APP, which more effectively enhances the thermal stability of the SF/PP/APP composites at high temperature and increases the char residue. The silica could form an intercalated network in char structure and then boost the physical integrity. The enhanced physical integrity and thermal stability lead to an effectively synergetic effect on flame retardancy of SF/PP/APP composites.


2014 ◽  
Vol 936 ◽  
pp. 17-22
Author(s):  
Xin Li ◽  
Yu Xiang Ou

Polypropylene (PP) and ethylene vinyl acetate copolymer (EVA) were treated with intumescent flame retardants containing caged bicyclic phosphates. The behavior of thermal degradation of the flame-retarded PP and EVA were studied by TG, DSC, and the FTIR spectra of PP’s residues at different temperature were recorded. In addition, the possible thermal degradation and char formation mechanisms were analyzed and discussed.


Sign in / Sign up

Export Citation Format

Share Document