scholarly journals Consumption of insect and plant exudates by mouse lemurs

2021 ◽  
Vol 19 (5) ◽  
pp. 282-282
Author(s):  
John F Mull ◽  
Sam Zeveloff
Keyword(s):  
Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 668
Author(s):  
Justine Oma Angadam ◽  
Seteno Karabo Obed Ntwampe ◽  
Boredi Silas Chidi ◽  
Jun Wei Lim ◽  
Vincent Ifeanyi Okudoh

Human endeavors generate a significant quantity of bio-waste, even lignocellulosic waste, due to rapid industrialization and urbanization, and can cause pollution to aquatic ecosystems, and contribute to detrimental animal and human health because of the toxicity of consequent hydrolysis products. This paper contributes to a new understanding of the lignocellulosic waste bio-pretreatment process from a literature review, which can provide better biorefinery operational outcomes. The simultaneous partial biological lignin, cellulose and hemicellulose lysis, i.e., simultaneous semi-lignino-holocellulolysis, is aimed at suggesting that when ligninolysis ensues, holocellulolysis is simultaneously performed for milled lignocellulosic waste instead of having a sequential process of initial ligninolysis and subsequent holocellulolysis as is currently the norm. It is presumed that such a process can be solely performed by digestive enzyme cocktails from the monkey cups of species such as Nepenthes, white and brown rot fungi, and some plant exudates. From the literature review, it was evident that the pretreatment of milled lignocellulosic waste is largely incomplete, and ligninolysis including holocellulolysis ensues simultaneously when the waste is milled. It is further proposed that lignocellulosic waste pretreatment can be facilitated using an environmentally friendly approach solely using biological means. For such a process to be understood and applied on an industrial scale, an interdisciplinary approach using process engineering and microbiology techniques is required.


ChemInform ◽  
2009 ◽  
Vol 40 (10) ◽  
Author(s):  
Joseph B. Lambert ◽  
Jorge A. Santiago-Blay ◽  
Ken B. Anderson

2012 ◽  
Vol 29 (12) ◽  
pp. 3807-3816 ◽  
Author(s):  
Philipp Hohenbrink ◽  
Ute Radespiel ◽  
Nicholas I. Mundy

2021 ◽  
Author(s):  
Blandine Chazarin ◽  
Margaux Benhaim-Delarbre ◽  
Charlotte Brun ◽  
Aude Anzeraey ◽  
Fabrice Bertile ◽  
...  

Grey mouse lemurs (Microcebus murinus) are a primate species exhibiting strong physiological seasonality in response to environmental energetic constraint. They notably store large amounts of lipids during early winter (EW), which are thereafter mobilized during late winter (LW), when food availability is low. In addition, they develop glucose intolerance in LW only. To decipher how the hepatic mechanisms may support such metabolic flexibility, we analyzed the liver proteome of adult captive male mouse lemurs, which seasonal regulations of metabolism and reproduction are comparable to their wild counterparts, during the phases of either constitution or use of fat reserves. We highlight profound changes that reflect fat accretion in EW at the whole-body level, however, without triggering an ectopic storage of fat in the liver. Moreover, molecular regulations would be in line with the lowering of liver glucose utilization in LW, and thus with reduced tolerance to glucose. However, no major regulation was seen in insulin signaling/resistance pathways, which suggests that glucose intolerance does not reach a pathological stage. Finally, fat mobilization in LW appeared possibly linked to reactivation of the reproductive system and enhanced liver detoxification may reflect an anticipation to return to summer levels of food intake. Altogether, these results show that the physiology of mouse lemurs during winter relies on solid molecular foundations in liver processes to adapt fuel partitioning while avoiding reaching a pathological state despite large lipid fluxes. This work emphasizes how the mouse lemur is of primary interest for identifying molecular mechanisms relevant to biomedical field.


Sign in / Sign up

Export Citation Format

Share Document