Three-Dimensional Reconstruction and Microstructure Modeling of Porosity-Graded Cathode Using Focused Ion Beam and Homogenization Techniques

Fuel Cells ◽  
2013 ◽  
Vol 14 (1) ◽  
pp. 91-95 ◽  
Author(s):  
H. Amani Hamedani ◽  
M. Baniassadi ◽  
A. Sheidaei ◽  
F. Pourboghrat ◽  
Y. Rémond ◽  
...  
2013 ◽  
Vol 19 (3) ◽  
pp. 745-750 ◽  
Author(s):  
Juan Balach ◽  
Flavio Soldera ◽  
Diego F. Acevedo ◽  
Frank Mücklich ◽  
César A. Barbero

AbstractA new technique that allows direct three-dimensional (3D) investigations of mesopores in carbon materials and quantitative characterization of their physical properties is reported. Focused ion beam nanotomography (FIB-nt) is performed by a serial sectioning procedure with a dual beam FIB-scanning electron microscopy instrument. Mesoporous carbons (MPCs) with tailored mesopore size are produced by carbonization of resorcinol-formaldehyde gels in the presence of a cationic surfactant as a pore stabilizer. A visual 3D morphology representation of disordered porous carbon is shown. Pore size distribution of MPCs is determined by the FIB-nt technique and nitrogen sorption isotherm methods to compare both results. The obtained MPCs exhibit pore sizes of 4.7, 7.2, and 18.3 nm, and a specific surface area of ca. 560 m2/g.


Microscopy ◽  
2020 ◽  
Author(s):  
Yuki Mizutani ◽  
Mika Yamashita ◽  
Rie Hashimoto ◽  
Toru Atsugi ◽  
Akemi Ryu ◽  
...  

Abstract Senile lentigo or age spots are hyperpigmented macules of skin that commonly develop following long-term exposure to ultraviolet radiation. This condition is caused by accumulation of large numbers of melanosomes (melanin granules) produced by melanocytes within neighboring keratinocytes. However, there is still no consensus regarding the melanosome transfer mechanism in senile lentigo. To date, most pathohistological studies of skin have been two-dimensional and do not provide detailed data on the complex interactions of the melanocyte–keratinocyte network involved in melanosome transfer. We performed a three-dimensional reconstruction of the epidermal microstructure in senile lentigo using three different microscopic modalities to visualize the topological melanocyte–keratinocyte relationship and melanosome distribution. Confocal laser microscopy images showed that melanocyte dendritic processes are more frequently branched and elongated in senile lentigo skin than in normal skin. Serial transmission electron micrographs showed that dendritic processes extend into intercellular spaces between keratinocytes. Focused ion beam-scanning electron micrographs showed that dendritic processes in senile lentigo encircle adjacent keratinocytes and accumulate large numbers of melanosomes. Moreover, melanosomes transferred to keratinocytes are present not only in the supranuclear area but throughout the perinuclear area except on the basal side. The use of these different microscopic methods helped to elucidate the three-dimensional morphology and topology of melanocytes and keratinocytes in senile lentigo. We show that the localization of melanosomes in dendritic processes to the region encircling recipient keratinocytes contributes to efficient melanosome transfer in senile lentigo.


2005 ◽  
Vol 908 ◽  
Author(s):  
Terence Yeoh ◽  
Neil Ives ◽  
Nathan Presser ◽  
Gary Stupian ◽  
Martin Leung ◽  
...  

AbstractAn antifuse structure was analyzed using scanning electron microscope imaging and focused ion beam image slicing to generate a form of three-dimensional microscopy. This method reveals nanometer scale features that could not be easily imaged using a single focused ion beam cross-section. A novel end-point detection technique has been developed to control the thickness of the slice to about 2 nm. Voxel imaging and interpretive three-dimensional reconstruction was used to resolve volumes as small as 2 cubic nm3. It was determined that the fusing region for an antifuse is a complex mixture of material phases with an elliptical volume approximately 75 nm in diameter.


Sign in / Sign up

Export Citation Format

Share Document