Magma chamber processes in Early Cretaceous Shangzhuang layered mafic intrusion from the North China Craton

2016 ◽  
Vol 52 (5) ◽  
pp. 851-872
Author(s):  
Xue-Ming Teng ◽  
M. Santosh ◽  
Toshiaki Tsunogae ◽  
Li Tang
2017 ◽  
Vol 155 (7) ◽  
pp. 1475-1506 ◽  
Author(s):  
XUE-MING TENG ◽  
M. SANTOSH ◽  
LI TANG

AbstractThe North China Craton (NCC) is one of the classic examples of decratonization through extensive lithospheric destruction during Mesozoic time. Among the various pulses of magmatism associated with cratonic erosion are the rare mafic intrusions in the Yanshan Belt. Here we investigate the Shangzhuang layered intrusion belonging to this suite, which is characterized by compositional layering with troctolite, noritic gabbro and gabbro/gabbroic anorthosite/gabbrodiorite from the bottom to top. The different lithologies of this intrusion exhibit close field relationships, similar chemical patterns and overall identical Lu–Hf isotopes indicating a co-magmatic nature. The fine-grained gabbros occurring near the margin of the intrusion display U–Pb ages similar to those of the other rocks and are considered to represent the composition of the parent magma, characterized by Fe, Mg and Ti enrichment. The magma was sourced from low-degree partial melting of spinel lherzolite sub-continental lithospheric mantle, which had been enriched by crust–mantle interaction and metasomatic fluids derived from the Mongolian oceanic slab subduction beneath the NCC during Late Palaeozoic time. In addition, limited asthenospheric or deeper-mantle materials were also locally mixed with the enriched mantle as the final source component. Our zircon U–Pb data constrain the emplacement age of this intrusion as c. 128–123 Ma in Early Cretaceous time, and correlates with the regional extensional tectonics between c. 135 and 115 Ma in the eastern and central NCC. Mantle upwelling associated with this event resulted in the thermal and chemical erosion of the lithospheric mantle, and emplacement of the parent magma of this layered intrusion.


2021 ◽  
pp. 104933
Author(s):  
Wuke Chen ◽  
Yi Liufu ◽  
Lei Wu ◽  
Chenyu Zhang ◽  
Hongwei Zhang ◽  
...  

2021 ◽  
Vol 58 (1) ◽  
pp. 50-66
Author(s):  
Yang Dong ◽  
Jingdang Liu ◽  
Yanfei Zhang ◽  
Shiyong Dou ◽  
Yanbin Li ◽  
...  

Mesozoic magmatic rocks are widely distributed in the North China Craton (NCC) and are crucial to understanding the timing, location, and geodynamic mechanisms of lithospheric thinning of the NCC. In this study, we report geochronological, petrogeochemical, and Lu–Hf isotopic data for adakitic granitoids from different parts of Xiuyan pluton in the Liaodong Peninsula, aiming to constrain their magma sources, petrogenesis, and tectonic implications. The adakites are metaluminous to weakly peraluminous and are classified as high-K calc-alkaline I-type granite with Early Cretaceous zircon U–Pb ages of 129–126 Ma. They exhibit adakite-like geochemical characteristics, such as high Sr content and low Yb and Y contents, coupled with high Sr/Y and no pronounced Eu anomalies. They are enriched in Rb, U, and light rare-earth elements and are depleted in Ta, Nb, P, and Ti. The adakites from the eastern part of the pluton have low εHf(t) values (–8.5 to –4.0) with old TDM2 ages (1.57–1.31 Ga), indicating they were derived from the lower crust containing juvenile mantle-derived materials. In contrast, adakites from the northern part of the pluton have lower εHf(t) values (–19.7 to –16.6) with older TDM2 ages (2.21–2.03 Ga), indicating that they were derived mainly from an ancient crust. Our results show that both adakitic magmas were derived from partial melting of delaminated lower crust. Their relatively high MgO and Ni contents and Mg# values indicate that the melts interacted with mantle peridotites. The lower crust delamination beneath the Liaodong Peninsula resulted from paleo-Pacific plate subduction during the Early Cretaceous, which resulted in thinning of Mesozoic crust in the Xiuyan area.


Author(s):  
Guang Zhu ◽  
Yuanchao Lu ◽  
Nan Su ◽  
Xiaodong Wu ◽  
Hao Yin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document