Composite Water-Sampling Device

1967 ◽  
Vol 59 (9) ◽  
pp. 1187-1189
Author(s):  
Wayne S. Gardner ◽  
J. E. Campbell
2009 ◽  
Author(s):  
Louise Parker ◽  
Nathan Mulherin ◽  
Gordon Gooch ◽  
William Major ◽  
Richard Willey ◽  
...  

Drones ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 5 ◽  
Author(s):  
Cengiz Koparan ◽  
A. Bulent Koc ◽  
Charles V. Privette ◽  
Calvin B. Sawyer

Water quality monitoring and predicting the changes in water characteristics require the collection of water samples in a timely manner. Water sample collection based on in situ measurable water quality indicators can increase the efficiency and precision of data collection while reducing the cost of laboratory analyses. The objective of this research was to develop an adaptive water sampling device for an aerial robot and demonstrate the accuracy of its functions in laboratory and field conditions. The prototype device consisted of a sensor node with dissolved oxygen, pH, electrical conductivity, temperature, turbidity, and depth sensors, a microcontroller, and a sampler with three cartridges. Activation of water capturing cartridges was based on in situ measurements from the sensor node. The activation mechanism of the prototype device was tested with standard solutions in the laboratory and with autonomous water sampling flights over the 11-ha section of a lake. A total of seven sampling locations were selected based on a grid system. Each cartridge collected 130 mL of water samples at a 3.5 m depth. Mean water quality parameters were measured as 8.47 mg/L of dissolved oxygen, pH of 5.34, 7 µS/cm of electrical conductivity, temperature of 18 °C, and 37 Formazin Nephelometric Unit (FNU) of turbidity. The dissolved oxygen was within allowable limits that were pre-set in the self-activation computer program while the pH, electrical conductivity, and temperature were outside of allowable limits that were specified by Environmental Protection Agency (EPA). Therefore, the activation mechanism of the device was triggered and water samples were collected from all the sampling locations successfully. The adaptive water sampling with Unmanned Aerial Vehicle-assisted water sampling device was proved to be a successful method for water quality evaluation.


Water ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 157 ◽  
Author(s):  
James Benson ◽  
Regina Hanlon ◽  
Teresa Seifried ◽  
Philipp Baloh ◽  
Craig Powers ◽  
...  

New tools and technology are needed to study microorganisms in freshwater environments. Little is known about spatial distribution and ice nucleation activity (INA) of microorganisms in freshwater lakes. We developed a system to collect water samples from the surface of lakes using a 3D-printed sampling device tethered to a drone (DOWSE, DrOne Water Sampling SystEm). The DOWSE was used to collect surface water samples at different distances from the shore (1, 25, and 50 m) at eight different freshwater lakes in Austria in June 2018. Water samples were filtered, and microorganisms were cultured on two different media types, TSA (a general growth medium) and KBC (a medium semi-selective for bacteria in the genus Pseudomonas). Mean concentrations (colony forming units per mL, or CFU/mL) of bacteria cultured on TSA ranged from 19,800 (Wörthersee) to 210,500 (Gosaulacke) CFU/mL, and mean concentrations of bacteria cultured on KBC ranged from 2590 (Ossiachersee) to 11,000 (Vorderer Gosausee) CFU/mL. There was no significant difference in sampling distance from the shore for concentrations of microbes cultured on TSA (p = 0.28). A wireless bathymetry sensor was tethered to the drone to map temperature and depth across the sampling domain of each of the lakes. At the 50 m distance from the shore, temperature ranged from 17 (Hinterer Gosausee, and Gosaulacke) to 26 °C (Wörthersee), and depth ranged from 2.8 (Gosaulacke) to 11.1 m (Grundlsee). Contour maps of concentrations of culturable bacteria across the drone sampling domain revealed areas of high concentrations (hot spots) in some of the lakes. The percentage of ice-nucleation active (ice+) bacteria cultured on KBC ranged from 0% (0/64) (Wörthersee) to 58% (42/72) (Vorderer Gosausee), with a mean of 28% (153/544) for the entire sample set. Future work aims to elucidate the structure and function of entire microbial assemblages within and among the Austrian lakes.


Sign in / Sign up

Export Citation Format

Share Document