Furanodienone inhibits cell proliferation and survival by suppressing ERα signaling in human breast cancer MCF-7 cells

2011 ◽  
Vol 112 (1) ◽  
pp. 217-224 ◽  
Author(s):  
Ying-Wei Li ◽  
Guo-Yuan Zhu ◽  
Xiao-Ling Shen ◽  
Jian-Hong Chu ◽  
Zhi-Ling Yu ◽  
...  
Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2908 ◽  
Author(s):  
Guixing Ren ◽  
Zhenxing Shi ◽  
Cong Teng ◽  
Yang Yao

Breast cancer is the most frequently diagnosed cancer in women worldwide. The antiproliferative activities of biochanin A (BA) and ginsenoside Rh2 were determined by evaluating their inhibitory effect on MDA-MB-231 human breast cancer cell proliferation. The combination of BA with Rh2 was also assessed. In MDA cells, combination treatment led to a decrease in the EC50 values of BA and Rh2 to 25.20 μM and 22.75 μM, respectively. In MCF-7 cells, the EC50 values of combined BA and Rh2 decreased to 27.68 μM and 25.41 μM, respectively. BA combined with Rh2 also improved the inhibition of MDA-MB-231 and MCF-7 cell migration and invasion compared to the individual compounds. Western blot analysis demonstrated upregulation in p-p53, p-p38, and p-ASK1 proteins while levels of TRAF2 were downregulated. These results suggest that BA combined with Rh2 exhibits synergistic effects against MDA-MB-231 and MCF-7 cell proliferation.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Meng-Wong Taing ◽  
Jean-Thomas Pierson ◽  
Paul N. Shaw ◽  
Ralf G. Dietzgen ◽  
Sarah J. Roberts-Thomson ◽  
...  

The assessment of human cancer cell proliferation is a common approach in identifying plant extracts that have potential bioactive effects. In this study, we tested the hypothesis that methanolic extracts of peel and flesh from three archetypal mango cultivars, Irwin (IW), Nam Doc Mai (NDM), and Kensington Pride (KP), differentially affect proliferation, extracellular signal-regulated kinase (ERK) activity, and intracellular calcium ([Ca2+]I) signalling in MCF-7 human breast cancer cells. Mango flesh extracts from all three cultivars did not inhibit cell growth, and of the peel extracts only NDM reduced MCF-7 cell proliferation. Mango cultivar peel and flesh extracts did not significantly change ERK phosphorylation compared to controls; however, some reduced relative maximal peak[Ca2+]Iafter adenosine triphosphate stimulation, with NDM peel extract having the greatest effect among the treatments. Our results identify mango interfruit and intrafruit (peel and flesh) extract variability in antiproliferative effects and[Ca2+]Isignalling in MCF-7 breast cancer cells and highlight that parts of the fruit (such as peel and flesh) and cultivar differences are important factors to consider when assessing potential chemopreventive bioactive compounds in plants extracts.


2013 ◽  
Vol 32 (12) ◽  
pp. 699-707 ◽  
Author(s):  
Guoqing Zhao ◽  
Jun Guo ◽  
Dong Li ◽  
Chengyou Jia ◽  
Wanzhong Yin ◽  
...  

2016 ◽  
Vol 40 (3-4) ◽  
pp. 807-817 ◽  
Author(s):  
Hong-Yan Zhang ◽  
Feng Liang ◽  
Fei Wang ◽  
Jian-Wei Zhang ◽  
Li Wang ◽  
...  

Background: Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. This study is aimed to investigate the effects of silencing the HAS-2 gene on the proliferation and apoptosis of human breast cancer cells. Methods: MCF-7 cells were collected and assigned into control, scrambled siRNA and HAS-2- siRNA groups. After transfection, the morphological changes in the MCF-7 cells were observed using phase contrast microscopy. qRT-PCR and Western blot assays were used to detect the mRNA and protein expression of apoptosis-related proteins. CCK-8 and flow cytometry were performed to evaluate cell proliferation, the cell cycle and apoptosis. Results: In the control and the scrambled siRNA groups, cells grew adhered to the wall and mainly showed a spindle shape with a clear nucleolus. Compared with the control and scrambled siRNA groups, increases in the number of cells in early apoptosis and metaphase cells in apoptosis were observed in the HAS-2-siRNA group. The HAS-2-siRNA group showed decreased expression of HAS-2 relative to that in the control and scrambled siRNA groups. No significant differences in cell proliferation, cell cycle distribution or apoptosis were noted between the control and scrambled siRNA groups. In the HAS-2-siRNA group, the cell proliferation ability decreased significantly, but the number of cells in the G0/G1 stage, the number of apoptotic cells and the expression of caspase-3 and caspase-9 increased significantly. Conclusion: Our findings indicate that HAS-2 gene silencing may inhibit proliferation and promote apoptosis in the MCF-7 human breast cancer cell line.


2017 ◽  
Vol 17 (2) ◽  
pp. 542-550 ◽  
Author(s):  
Nariman K. Badr El-Din ◽  
Ashraf Z. Mahmoud ◽  
Tahia Ali Hassan ◽  
Mamdooh Ghoneum

Our earlier studies have demonstrated that phagocytosis of baker’s yeast ( Saccharomyces cerevisiae) induces apoptosis in different cancer cell lines in vitro and in vivo. This study aimed to examine how baker’s yeast sensitizes murine and human breast cancer cells (BCC) to paclitaxel in vitro. This sensitizing effect makes lower concentrations of chemotherapy more effective at killing cancer cells, thereby enhancing the capacity of treatment. Three BCC lines were used: the metastatic murine 4T1 line, the murine Ehrlich ascites carcinoma (EAC) line, and the human breast cancer MCF-7 line. Cells were cultured with different concentrations of paclitaxel in the presence or absence of baker’s yeast. Cell survival and the IC50 values were determined by MTT assay and trypan blue exclusion method. Percent of DNA damage, apoptosis, and cell proliferation were examined by flow cytometry. Yeast alone and paclitaxel alone significantly decreased 4T1 cell viability postculture (24 and 48 hours), caused DNA damage, increased apoptosis, and suppressed cell proliferation. Baker’s yeast in the presence of paclitaxel increased the sensitivity of 4T1 cells to chemotherapy and caused effects that were greater than either treatment alone. The chemosensitizing effect of yeast was also observed with murine EAC cells and human MCF-7 cells, but to a lesser extent. These data suggest that dietary baker’s yeast is an effective chemosensitizer and can enhance the apoptotic capacity of paclitaxel against breast cancer cells in vitro. Baker’s yeast may represent a novel adjuvant for chemotherapy treatment.


Sign in / Sign up

Export Citation Format

Share Document