Conditioned medium from endothelial cell cultures can restore the normal phenotypic expression of vascular endothelium maintained in vitro in the absence of fibroblast growth factor

1980 ◽  
Vol 103 (2) ◽  
pp. 333-348 ◽  
Author(s):  
G. Greenburg ◽  
I. Vlodavsky ◽  
J. M. Foidart ◽  
D. Gospodarowicz
1999 ◽  
Vol 10 (2) ◽  
pp. 313-327 ◽  
Author(s):  
Marco Rusnati ◽  
Elena Tanghetti ◽  
Chiara Urbinati ◽  
Giovanni Tulipano ◽  
Sergio Marchesini ◽  
...  

Exogenous gangliosides affect the angiogenic activity of fibroblast growth factor-2 (FGF-2), but their mechanism of action has not been elucidated. Here, a possible direct interaction of sialo-glycolipids with FGF-2 has been investigated. Size exclusion chromatography demonstrates that native, but not heat-denatured, 125I-FGF-2 binds to micelles formed by gangliosides GT1b, GD1b, or GM1. Also, gangliosides protect native FGF-2 from trypsin digestion at micromolar concentrations, the order of relative potency being GT1b > GD1b > GM1 = GM2 = sulfatide > GM3 = galactosyl-ceramide, whereas asialo-GM1, neuraminic acid, and N-acetylneuramin-lactose were ineffective. Scatchard plot analysis of the binding data of fluorochrome-labeled GM1 to immobilized FGF-2 indicates that FGF–2/GM1 interaction occurs with aK d equal to 6 μM. This interaction is inhibited by the sialic acid-binding peptide mastoparan and by the synthetic fragments FGF-2(112–129) and, to a lesser extent, FGF-2(130–155), whereas peptides FGF-2(10–33), FGF-2(39–59), FGF-2(86–96), and the basic peptide HIV-1 Tat(41–60) were ineffective. These data identify the COOH terminus of FGF-2 as a putative ganglioside-binding region. Exogenous gangliosides inhibit the binding of 125I-FGF-2 to high-affinity tyrosine-kinase FGF-receptors (FGFRs) of endothelial GM 7373 cells at micromolar concentrations. The order of relative potency was GT1b > GD1b > GM1 > sulfatide a = sialo-GM1. Accordingly, GT1b,GD1b, GM1, and GM2, but not GM3 and asialo-GM1, prevent the binding of 125I-FGF-2 to a soluble, recombinant form of extracellular FGFR-1. Conversely, the soluble receptor and free heparin inhibit the interaction of fluorochrome-labeled GM1 to immobilized FGF-2. In agreement with their FGFR antagonist activity, free gangliosides inhibit the mitogenic activity exerted by FGF-2 on endothelial cells in the same range of concentrations. Also in this case, GT1b was the most effective among the gangliosides tested while asialo-GM1, neuraminic acid,N-acetylneuramin-lactose, galactosyl-ceramide, and sulfatide were ineffective. In conclusion, the data demonstrate the capacity of exogenous gangliosides to interact with FGF-2. This interaction involves the COOH terminus of the FGF-2 molecule and depends on the structure of the oligosaccharide chain and on the presence of sialic acid residue(s) in the ganglioside molecule. Exogenous gangliosides act as FGF-2 antagonists when added to endothelial cell cultures. Since gangliosides are extensively shed by tumor cells and reach elevated levels in the serum of tumor-bearing patients, our data suggest that exogenous gangliosides may affect endothelial cell function by a direct interaction with FGF-2, thus modulating tumor neovascularization.


2013 ◽  
Vol 25 (2) ◽  
pp. 372 ◽  
Author(s):  
Mhairi Laird ◽  
Kathryn J. Woad ◽  
Morag G. Hunter ◽  
George E. Mann ◽  
Robert S. Robinson

The transition from follicle to corpus luteum represents a period of intense angiogenesis; however, the exact roles of angiogenic factors during this time remain to be elucidated. Thus, the roles of vascular endothelial growth factor (VEGF) A, fibroblast growth factor (FGF) 2 and LH in controlling angiogenesis were examined in the present study. A novel serum-free luteinising follicular angiogenesis culture system was developed in which progesterone production increased during the first 5 days and was increased by LH (P < 0.01). Blockade of signalling from FGF receptors (SU5402; P < 0.001) and, to a lesser extent, VEGF receptors (SU1498; P < 0.001) decreased the development of endothelial cell (EC) networks. Conversely, FGF2 dose-dependently (P < 0.001) induced the precocious transition of undeveloped EC islands into branched networks associated with a twofold increase in the number of branch points (P < 0.001). In contrast, VEGFA had no effect on the area of EC networks or the number of branch points. LH had no effect on the area of EC networks, but it marginally increased the number of branch points (P < 0.05) and FGF2 production (P < 0.001). Surprisingly, progesterone production was decreased by FGF2 (P < 0.01) but only on Day 5 of culture. Progesterone production was increased by SU5402 (P < 0.001) and decreased by SU1498 (P < 0.001). These results demonstrate that FGF and VEGF receptors play a fundamental role in the formation of luteal EC networks in vitro, which includes a novel role for FGF2 in induction of EC sprouting.


Blood ◽  
2004 ◽  
Vol 104 (1) ◽  
pp. 92-99 ◽  
Author(s):  
Marco Rusnati ◽  
Maura Camozzi ◽  
Emanuela Moroni ◽  
Barbara Bottazzi ◽  
Giuseppe Peri ◽  
...  

Abstract The long pentraxin PTX3 is a soluble pattern recognition receptor produced by monocytes and endothelial cells that plays a nonredundant role in inflammation. Several pathologic conditions are characterized by local production of both PTX3 and the angiogenic fibroblast growth factor-2 (FGF2). Here, solid-phase binding assays demonstrated that PTX3 binds with high affinity to FGF2 but not to a panel of cytokines and growth factors, including FGF1, FGF4, and FGF8. Accordingly, PTX3 prevented 125I-FGF2 binding to endothelial cell receptors, leading to specific inhibition of FGF2-induced proliferation. PTX3 hampered also the motogenic activity exerted by endogenous FGF2 on a wounded endothelial cell monolayer. Moreover, PTX3 cDNA transduction in FGF2-transformed endothelial cells inhibited their autocrine FGF2-dependent proliferation and morphogenesis in vitro and their capacity to generate vascular lesions when injected in nude mice. Finally, PTX3 suppressed neovascularization triggered by FGF2 in the chick embryo chorioallantoic membrane with no effect on physiologic angiogenesis. In contrast, the short pentraxin C-reactive protein was a poor FGF2 ligand/antagonist. These results establish the selective binding of a member of the pentraxin superfamily to a growth factor. PTX3/FGF2 interaction may modulate angiogenesis in various physiopathologic conditions driven by inflammation, innate immunity, and/or neoplastic transformation.


1992 ◽  
Vol 118 (4) ◽  
pp. 901-909 ◽  
Author(s):  
R Flaumenhaft ◽  
M Abe ◽  
P Mignatti ◽  
D B Rifkin

Exposure of bovine aortic or capillary endothelial cells to basic FGF (bFGF) for 1 h resulted in an approximately sixfold increase in plasminogen activator (PA) activity by 18 h that returned nearly to basal levels by 36 h. We hypothesized that the decrease in PA activity following bFGF stimulation was mediated by transforming growth factor beta (TGF-beta) formed from its inactive precursor. Conditioned medium collected from endothelial cells 36 h after a 1-h exposure to bFGF, but not control medium, inhibited basal levels of PA activity when transferred to confluent monolayers of bovine aortic endothelial cells. Antibody to TGF-beta neutralized the inhibitory activity of this conditioned medium, indicating that the medium contained active TGF-beta. Northern blot analysis and quantitation of acid activatable latent TGF-beta in conditioned medium demonstrated that bFGF exposure did not increase the amount of transcription or secretion of latent TGF-beta by the endothelial cells. Both aprotinin, an inhibitor of plasmin, and anti-urokinase type PA IgG blocked the generation of active TGF-beta in cultures exposed to bFGF. These results demonstrated that plasmin generated by uPA activity is required for the activation of latent TGF-beta in endothelial cell cultures treated with bFGF. Activation of TGF-beta by endothelial cells exposed to bFGF appears to limit both the degree and duration of PA stimulation. Thus, in bFGF-stimulated endothelial cell cultures, PA levels are controlled by a negative feedback loop: PA, whose expression is stimulated by bFGF, contributes to the formation of TGF-beta, which in turn opposes the effects of bFGF by limiting PA synthesis and activity. These studies suggest a role for TGF-beta in reversing the invasive stage of angiogenesis and contributing to the formation of quiescent capillaries.


1975 ◽  
Author(s):  
Payling H. Wright ◽  
M. Evans

Cultures of vascular endothelium obtained from fresh human umbilical veins and grown in vitro in fortified 199 medium for several days have been subjected to differing concentrations of adrenalin for various times. Their reactions to the drug, as seen microscopically, were recorded photographically. The viability of endothelial cells under these cultural conditions gives a measure of the maximal exposure to adrenalin which they are able not only to survive, but also to multiply. Their capacity to mitose was studied autor adiographically.The significance of the findings will be discussed with reference to atherogenesis and particularly the possible link with infection and in “stress”.


1994 ◽  
Vol 303 (2) ◽  
pp. 583-590 ◽  
Author(s):  
D Coltrini ◽  
M Rusnati ◽  
G Zoppetti ◽  
P Oreste ◽  
G Grazioli ◽  
...  

Heparins from bovine mucosa and lung, and chemically modified heparins were assayed for their capacity to: (i) protect human recombinant basic fibroblast growth factor (bFGF) from tryptic cleavage; (ii) prevent 125I-bFGF binding to heparan sulphate proteoglycans present in the extracellular matrix and on the cell surface of fetal bovine aortic endothelial GM 7373 cell cultures; (iii) affect 125I-bFGF binding to high-affinity tyrosine kinase FGF receptors present on the cell membrane of GM 7373 cells; (iv) inhibit the mitogenic activity exerted by bFGF in the same cells. The results demonstrate that the potency shown by mucosal heparins in the different assays is a direct function of size, very-low-molecular-mass heparin (2.0 kDa) being significantly less effective on a molar basis than unfractionated heparin (13.6 kDa). Increased flexibility of the backbone structure, as observed in reduced/oxidized heparins of different size, does not affect the capacity of the polysaccharide to interact with bFGF. In contrast, selective 2-O-desulphation, but not 6-O-desulphation, drastically reduced the capacity of heparin to protect bFGF from proteolytic cleavage, to affect its interaction with low- and high-affinity sites, and to inhibit its mitogenic activity. Two preparations of bovine lung heparin, differing in molecular mass, were as effective as mucosal heparin in the bFGF-tryptic-digestion assay and the endothelial-cell proteoglycan-binding assay, but they were highly inefficient at inhibiting the capacity of bFGF to interact with its tyrosine kinase receptors. Bovine lung heparins were also less effective than mucosal heparin as bFGF antagonists in GM 7373-cell-proliferation assays. N-Desulphated/N-acetylated bovine lung heparin retained only a significant capacity to protect bFGF from tryptic cleavage. The results demonstrate that different chemical features of the heparin molecule, including decrease in molecular mass, selective desulphation, disaccharide composition and clustering, affect differently the capacity of the glycosaminoglycan to interact with bFGF and to influence its biological behaviour in different assays in vitro and in endothelial cell cultures. Our findings should aid the design of synthetic oligosaccharides aimed at improving the bioavailability of bFGF when administered in vivo as a therapeutic agent.


Sign in / Sign up

Export Citation Format

Share Document