Sample preparation technique for cross-sectional transmission electron microscopy of quantum wire structures

1993 ◽  
Vol 26 (2) ◽  
pp. 157-161 ◽  
Author(s):  
Yu-Pei Chen ◽  
Jason D. Reed ◽  
Sean S. O'Keefe ◽  
William J. Schaff ◽  
Lester F. Eastman
2001 ◽  
Vol 7 (S2) ◽  
pp. 948-949
Author(s):  
R. S. Rai ◽  
S. Bagchi ◽  
L. Duncan ◽  
L. Prabhu ◽  
J. Beck ◽  
...  

In recent years, the availability of focused ion beam (FIB) milling systems has given a much-needed boost for transmission electron microscopy (TEM) as a technique for site-specific analysis. Much progress has been made in the area of site-specific cross-sectional and planar TEM sample preparation techniques. However, a continuing need exists to reduce the sample preparation time, in order to improve TEM cycle time for better support of process development, yield improvement and production in a high-volume industrial environment. Thus, a faster TEM sample preparation technique is always desirable to meet this demand. A new approach to TEM sample preparation is described in this paper.Following the new approach developed in the present work, one can prepare on a single TEM grid at least two different cross-sectional samples of site-specific device structures or up to four different cross-sectional samples of blanket films. Two different samples, each containing an area of interest near the center, are cleaved or cut to a width of about 1.25 mm; these samples may be from two separate locations of a wafer, or from two different wafers where TEM analyses are required.


Author(s):  
Ching Shan Sung ◽  
Hsiu Ting Lee ◽  
Jian Shing Luo

Abstract Transmission electron microscopy (TEM) plays an important role in the structural analysis and characterization of materials for process evaluation and failure analysis in the integrated circuit (IC) industry as device shrinkage continues. It is well known that a high quality TEM sample is one of the keys which enables to facilitate successful TEM analysis. This paper demonstrates a few examples to show the tricks on positioning, protection deposition, sample dicing, and focused ion beam milling of the TEM sample preparation for advanced DRAMs. The micro-structures of the devices and samples architectures were observed by using cross sectional transmission electron microscopy, scanning electron microscopy, and optical microscopy. Following these tricks can help readers to prepare TEM samples with higher quality and efficiency.


1998 ◽  
Vol 523 ◽  
Author(s):  
C. Amy Hunt ◽  
Yuhong Zhang ◽  
David Su

AbstractTransmission electron microscopy (TEM) is a useful tool in process evaluation and failure analysis for semiconductor industries. A common focus of semiconductor TEM analyses is metalization vias (plugs) and it is often desirable to cross-section through a particular one. If the cross-sectional plane deviates away from the center of the plug, then the thin adhesion layer around the plug will be blurred by surrounding materials such as the inter-layer dielectric and the plug material. The importance of these constraints, along with the difficulty of precision sample preparation, has risen sharply as feature sizes have fallen to 0.25 μm and below. The suitability of common sample preparation techniques for these samples is evaluated.


2014 ◽  
Vol 20 (6) ◽  
pp. 1646-1653
Author(s):  
Claire V. Weiss Brennan ◽  
Scott D. Walck ◽  
Jeffrey J. Swab

AbstractA new technique for the preparation of heavily cracked, heavily damaged, brittle materials for examination in a transmission electron microscope (TEM) is described in detail. In this study, cross-sectional TEM samples were prepared from indented silicon carbide (SiC) bulk ceramics, although this technique could also be applied to other brittle and/or multiphase materials. During TEM sample preparation, milling-induced damage must be minimized, since in studying deformation mechanisms, it would be difficult to distinguish deformation-induced cracking from cracking occurring due to the sample preparation. The samples were prepared using a site-specific, two-step ion milling sequence accompanied by epoxy vacuum infiltration into the cracks. This technique allows the heavily cracked, brittle ceramic material to stay intact during sample preparation and also helps preserve the true microstructure of the cracked area underneath the indent. Some preliminary TEM results are given and discussed in regards to deformation studies in ceramic materials. This sample preparation technique could be applied to other cracked and/or heavily damaged materials, including geological materials, archaeological materials, fatigued materials, and corrosion samples.


Sign in / Sign up

Export Citation Format

Share Document