Effect of selenium deficiency on liver and blood glutathione peroxidase activity in the black bullhead

1983 ◽  
Vol 225 (2) ◽  
pp. 325-327 ◽  
Author(s):  
James F. Heisinger ◽  
Steven M. Dawson
1987 ◽  
Vol 63 (6) ◽  
pp. 2532-2535 ◽  
Author(s):  
J. K. Lang ◽  
K. Gohil ◽  
L. Packer ◽  
R. F. Burk

Increased O2 metabolism imposed by physical exercise is likely to augment the production of active O2 species that have been shown to react with lipids, proteins, and DNA. Antioxidants and antioxidant enzymes, such as the selenium enzyme glutathione peroxidase, minimize or prevent such potentially toxic reactions. This study shows that selenium deficiency decreases glutathione peroxidase activity in liver and muscle (less than 80%, P less than 0.001), increases total glutathione in liver, muscle, and plasma (P less than 0.05) and increases muscle cytochrome oxidase activity, and ubiquinone content (P less than 0.05) but has no effect on endurance capacity. Exercise to exhaustion resulted in a significant (P less than 0.001) elevation of total and oxidized glutathione (GSSG) and a significant (P less than 0.05) decrease of vitamin E in plasma of control and selenium-deficient rats. Acute exercise also increased tissue GSSG levels in both control and selenium-deficient groups of rats. Hence, despite a large depletion of selenium-deficient glutathione peroxidase, pronounced oxidation of glutathione to GSSG can be produced by the increased oxidative metabolism during physical exercise. The results suggest that the residual glutathione peroxidase activity is sufficient to detoxify hydroperoxides in exercising selenium-deficient animals and to prevent the impairment of endurance capacity.


1985 ◽  
Vol 63 (7) ◽  
pp. 1544-1547 ◽  
Author(s):  
Charles T. Robbins ◽  
Steven M. Parish ◽  
Barbara L. Robbins

Blood glutathione peroxidase (GSH-Px) activity in mountain goats (Oreamnos americanus) is a linear function of blood selenium. GSH-Px activity per unit of selenium (Se) in mountain goats is approximately double that published for the domestic cow and horse. It is hypothesized that high GSH-Px activity per unit selenium in mountain goats reduces their dietary selenium requirement relative to the above domestic species and is an essential adaptation for occupying low-selenium environments. GSH-Px activity peaked 20–30 days after injections of 0.1 and 0.3 mg Se/kg. A higher dose of 0.5 mg Se/kg delayed and decreased the development of peak GSH-Px activity relative to the two lower injection groups. When acute pathology owing to a selenium deficiency is demonstrated in wildlife capture programs, passive selenium supplementation, such as with selenium-containing salt blocks, should begin weeks to months before capture to provide adequate time for GSH-Px development.


1991 ◽  
Vol 261 (1) ◽  
pp. E26-E30 ◽  
Author(s):  
R. F. Burk ◽  
K. E. Hill ◽  
R. Read ◽  
T. Bellew

Selenoprotein P is a glycoprotein that contains greater than 60% of the selenium in rat plasma. Physiological experiments were undertaken to gain insight into selenoprotein P function. Selenium-deficient rats were injected with doses of selenium ranging from 25 to 200 micrograms/kg, and the appearance of selenoprotein P was compared with the appearance of glutathione peroxidase activity in plasma and in liver. Selenoprotein P concentration increased to 35% of control by 6 h, whereas glutathione peroxidase activity increased minimally or not at all. Moreover, in rats given 100 and 200 micrograms selenium/kg, selenoprotein P reached 75% of its concentration in control rats at 24 h, whereas glutathione peroxidase activity reached only 6% of control. Cycloheximide pretreatment blocked the appearance of selenoprotein P in response to selenium injection. Male and female rats had similar concentrations of selenoprotein P. Partially purified selenoprotein P and plasma glutathione peroxidase labeled with 75Se were administered intravenously to selenium-deficient and control rats. 75Se given as selenoprotein P disappeared more rapidly from plasma than did 75Se given as glutathione peroxidase. Selenium deficiency did not significantly affect 75Se disappearance from plasma. At 2 h, brain, but not other tissues, took up more 75Se in selenium-deficient rats than in control rats when 75Se was given as selenoprotein P. This suggests that brain has a specific uptake mechanism for selenium given in the form of selenoprotein P. These results demonstrate that several physiological properties distinguish selenoprotein P from glutathione peroxidase. However, they do not clearly indicate its function.


1981 ◽  
Vol 111 (4) ◽  
pp. 690-693 ◽  
Author(s):  
Raymond F. Burk ◽  
James M. Lane ◽  
Richard A. Lawrence ◽  
Paula E. Gregory

1995 ◽  
Vol 89 (6) ◽  
pp. 637-642 ◽  
Author(s):  
Oliviero Olivieri ◽  
Domenico Girelli ◽  
Margherita Azzini ◽  
Anna Maria Stanzial ◽  
Carla Russo ◽  
...  

1. Iodothyronine 5′-deiodinase, which is mainly responsible for peripheral triiodothyronine (T3) production, has recently been demonstrated to be a selenium-containing enzyme. In the elderly, reduced peripheral conversion of thyroxine (T4) to T3 and overt hypothyroidism are frequently observed. 2. We measured serum selenium and erythrocyte glutathione peroxidase (as indices of selenium status), thyroid hormones and thyroid-stimulating hormone in 109 healthy euthyroid subjects (52 women, 57 men), carefully selected to exclude abnormally low thyroid hormone levels induced by acute or chronic diseases or calorie restriction. The subjects were subdivided into three age groups. To avoid conditions of undernutrition or malnutrition, dietary records were obtained for a sample of 24 subjects, randomly selected and representative of the whole population for age and sex. 3. In order to properly assess the influence of selenium status on iodothyronine 5′-deiodinase type I activity, a double-blind placebo-controlled trial was also carried out on 36 elderly subjects, resident at a privately owned nursing home. 4. In the free-living population, a progressive reduction of the T3/T4 ratio (due to increased T4 levels) and of selenium and erythrocyte glutathione peroxidase activity was observed with advancing age. A highly significant linear correlation between T4, T3/T4 and selenium was observed in the population as a whole (for T4, R = −0.312, P < 0.002; for T3/T4 ratio, R = 0.32, P < 0.01) and in older subjects (for T4, R = −0.40, P < 0.05; for T3/T4 ratio, R = 0.54, P < 0.002). 5. The main result of the double-blind placebo-controlled trial was a significant improvement of selenium indices and a decrease in the T4 level in selenium-treated subjects; serum selenium, erythrocyte glutathione peroxidase activity and thyroid hormones did not change in placebo-treated subjects. 6. We concluded that selenium status influences thyroid hormones in the elderly, mainly modulating T4 levels.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Itana Gomes Alves Andrade ◽  
Fabíola Isabel Suano-Souza ◽  
Fernando Luiz Affonso Fonseca ◽  
Carolina Sanchez Aranda Lago ◽  
Roseli Oselka Saccardo Sarni

Abstract Introduction Ataxia-Telangiectasia (A-T) is a multi-system disorder that may be associated with endocrine changes, oxidative stress in addition to inflammation. Studies suggest that selenium is a trace element related to protection against damage caused by oxidative stress. Objective To describe the plasma levels of selenium and erythrocyte glutathione peroxidase activity in A-T patients and to relate them to oxidative stress and lipid status biomarkers. Methods This is a cross-sectional and controlled study evaluating 22 A-T patients (age median, 12.2 years old) matched by gender and age with 18 healthy controls. We evaluated: nutritional status, food intake, plasma selenium levels, erythrocyte glutathione peroxidase activity, lipid status, inflammation and oxidative stress biomarkers. Results Adequate levels of selenium were observed in 24/36 (66.7%) in this evaluated population. There was no statistically significant difference between the groups in selenium levels [47.6 μg/L (43.2–57.0) vs 54.6 (45.2–62.6) μg/dL, p = 0.242]. Nine of A-T patients (41%) had selenium levels below the reference value. The A-T group presented higher levels of LDL-c, non-HDL-c, oxidized LDL, Apo B, Apo-B/Apo-A-I1, LDL-c/HDL-c ratio, malondialdehyde [3.8 µg/L vs 2.8 µg/L, p = 0.029] and lower Apo-A-I1/HDL-c and glutathione peroxidase activity [7300 U/L vs 8686 U/L, p = 0.005]. Selenium levels were influenced, in both groups, independently, by the concentrations of oxidized LDL, malonaldehyde and non-HDL-c. The oxidized LDL (AUC = 0.849) and ALT (AUC = 0.854) were the variables that showed the greatest discriminatory power between groups. Conclusion In conclusion, we observed the presence of selenium below the reference value in nearly 40% and low GPx activity in A-T patients. There was a significant, inverse and independent association between selenium concentrations and oxidative stress biomarkers. Those data reinforce the importance of assessing the nutritional status of selenium in those patients.


1989 ◽  
Vol 264 (3) ◽  
pp. 737-744 ◽  
Author(s):  
P Steinberg ◽  
H Schramm ◽  
L Schladt ◽  
L W Robertson ◽  
H Thomas ◽  
...  

The distribution and inducibility of cytosolic glutathione S-transferase (EC 2.5.1.18) and glutathione peroxidase (EC 1.11.1.19) activities in rat liver parenchymal, Kupffer and endothelial cells were studied. In untreated rats glutathione S-transferase activity with 1-chloro-2,4-dinitrobenzene and 4-hydroxynon-2-trans-enal as substrates was 1.7-2.2-fold higher in parenchymal cells than in Kupffer and endothelial cells, whereas total, selenium-dependent and non-selenium-dependent glutathione peroxidase activities were similar in all three cell types. Glutathione S-transferase isoenzymes in parenchymal and non-parenchymal cells isolated from untreated rats were separated by chromatofocusing in an f.p.l.c. system: all glutathione S-transferase isoenzymes observed in the sinusoidal lining cells were also detected in the parenchymal cells, whereas Kupffer and endothelial cells lacked several glutathione S-transferase isoenzymes present in parenchymal cells. At 5 days after administration of Arocolor 1254 glutathione S-transferase activity was only enhanced in parenchymal cells; furthermore, selenium-dependent glutathione peroxidase activity decreased in parenchymal and non-parenchymal cells. At 13 days after a single injection of Aroclor 1254 a strong induction of glutathione S-transferase had taken place in all three cell types, whereas selenium-dependent glutathione peroxidase activity remained unchanged (endothelial cells) or was depressed (parenchymal and Kupffer cells). Hence these results clearly establish that glutathione S-transferase and glutathione peroxidase are differentially regulated in rat liver parenchymal as well as non-parenchymal cells. The presence of glutathione peroxidase and several glutathione S-transferase isoenzymes capable of detoxifying a variety of compounds in Kupffer and endothelial cells might be crucial to protect the liver from damage by potentially hepatotoxic substances.


Sign in / Sign up

Export Citation Format

Share Document