Aromatic side-chain cluster of biotin binding site of avidin allows circular dichroism spectroscopic investigation of its ligand binding properties

2011 ◽  
Vol 24 (6) ◽  
pp. 995-1006 ◽  
Author(s):  
Ferenc Zsila
1982 ◽  
Vol 203 (3) ◽  
pp. 775-778 ◽  
Author(s):  
C J Bailey ◽  
S R Martin ◽  
P M Bayley

The far-u.v. circular-dichroism spectra of the two epidermolytic toxins was analysed into fractional contributions of 0.09 helix and 0.46 beta-sheet to each toxin structure. Trifluoroethanol perturbation caused an initial increase in dichroic absorption at 205 nm and then a change characterized as a beta-sheet-to-alpha-helix transition. The intense near-u.v. spectra suggested that the toxins have unusually rigid, though different, aromatic-side-chain arrangements.


2014 ◽  
Vol 69 (7) ◽  
pp. 313-325 ◽  
Author(s):  
Robert W. Woody ◽  
Gennaro Pescitelli

The rotational strength (R) of the Soret transition in sperm-whale myoglobin (SW Mb), the hemoglobin from Chironomus thummi thummi (CTT Hb), and human hemoglobin (hHb) has been calculated using 20 high-resolution (< 1:5 Å) crystal structures. The intrinsic rotational strength due to heme non-planarity was calculated using π-electron theory and time-dependent density functional theory (TDDFT). Calculations on model protoporphyrins with a planar nucleus and with various torsional angles for the 2- and 4-vinyl substituents showed maximum R of ±0.70 Debye-Bohr magneton (1 DBM = 0.9273 · 10-38 cgs units). Viewing the heme so that the 2- and 4-vinyls are in a counterclockwise relationship, if a vinyl points toward the viewer, it contributes positively to R. Calculations of the intrinsic R for explicit heme geometries of SW Mb, CTT Hb, and hHb gave averages of 0.40±0.09, ±0:44±0.04, and +0.32±0.11 DBM, respectively. Coupling of the Soret transition with aromatic side-chain and peptide backbone transitions was also considered. For SW Mb, the magnitudes of the contributions decreased in the order Rint > Raro > Rpep. For CTT Hb and hHB, the orders were, respectively, Rint > Rpep > Raro and Rint > Raro ≈ Rpep. Human Hb ɑ chains showed the same trend as CTT Hb. Only in the hHb β chains did Raro predominate, with the order Raro > Rint > Rpep. The total predicted Rtot for SW Mb, CTT Hb, and hHb averaged +0.77±0.10 (0.56 - 0.80), -0.37±0.12 (-0.5), and +0.31±0.17 DBM (0.23 - 0.50), respectively. (Values in parentheses are experimental values.) Thus, contrary to the currently accepted view, coupling with aromatic side-chain or peptide transitions is not the dominant factor in the Soret circular dichroism (CD) of these proteins. The Soret CD is dominated by intrinsic CD of the heme chromophore, of which vinyl torsion is the major determinant. This result suggests an explanation for the large effect of heme isomerism on the Soret CD of Mb and Hb. Rotation about the ɑ-γ axis may be associated with large changes in vinyl torsion and thus substantially alter the intrinsic CD, even reversing its sign.


2012 ◽  
Vol 23 (19) ◽  
pp. 3801-3813 ◽  
Author(s):  
Batbileg Bor ◽  
Christina L. Vizcarra ◽  
Martin L. Phillips ◽  
Margot E. Quinlan

Formins are a conserved family of proteins known to enhance actin polymerization. Most formins are regulated by an intramolecular interaction. The Drosophila formin, Cappuccino (Capu), was believed to be an exception. Capu does not contain conserved autoinhibitory domains and can be regulated by a second protein, Spire. We report here that Capu is, in fact, autoinhibited. The N-terminal half of Capu (Capu-NT) potently inhibits nucleation and binding to the barbed end of elongating filaments by the C-terminal half of Capu (Capu-CT). Hydrodynamic analysis indicates that Capu-NT is a dimer, similar to the N-termini of other formins. These data, combined with those from circular dichroism, suggest, however, that it is structurally distinct from previously described formin inhibitory domains. Finally, we find that Capu-NT binds to a site within Capu-CT that overlaps with the Spire-binding site, the Capu-tail. We propose models for the interaction between Spire and Capu in light of the fact that Capu can be regulated by autoinhibition.


Sign in / Sign up

Export Citation Format

Share Document