Response of the summer atmospheric circulation over East Asia to SST variability in the tropical Pacific

2009 ◽  
pp. n/a-n/a ◽  
Author(s):  
Rena Nagata ◽  
Takehiko Mikami
2014 ◽  
Vol 28 (1) ◽  
pp. 56-65 ◽  
Author(s):  
Laura M. Ciasto ◽  
Graham R. Simpkins ◽  
Matthew H. England

Abstract Teleconnections from tropical Pacific sea surface temperature (SST) anomalies to the high-latitude Southern Hemisphere (SH) are examined using observations and reanalysis. Analysis of tropical Pacific SST anomalies is conducted separately for the central Pacific (CP) and eastern Pacific (EP) regions. During the austral cold season, extratropical SH atmospheric Rossby wave train patterns are observed in association with both EP and CP SST variability. The primary difference between the patterns is the westward displacement of the CP-related atmospheric anomalies, consistent with the westward elongation of CP-related convective SST required for upper-level divergence and Rossby wave generation. Consequently, CP-related patterns of SH SST, Antarctic sea ice, and temperature anomalies also exhibit a westward displacement, but otherwise, the cold season extratropical SH teleconnections are largely similar. During the warm season, however, extratropical SH teleconnections associated with tropical CP and EP SST anomalies differ substantially. EP SST variability is linked to largely zonally symmetric structures in the extratropical atmospheric circulation, which projects onto the southern annular mode (SAM), and is strongly related to the SH temperature and sea ice fields. In contrast, CP SST variability is only weakly related to the SH atmospheric circulation, temperature, or sea ice fields and no longer exhibits any clear association with the SAM. One hypothesized mechanism suggests that the relatively weak CP-related SST anomalies are not able to substantially impact the background flow of the subtropical jet and its subsequent interaction with equatorward-propagating waves associated with variability in the SAM. However, there is currently no widely established mechanism that links tropical Pacific SST anomalies to the SAM.


2014 ◽  
Vol 27 (21) ◽  
pp. 7953-7975 ◽  
Author(s):  
Bradfield Lyon

Abstract This paper provides a review of atmospheric circulation and sea surface temperature (SST) conditions that are associated with meteorological drought on the seasonal time scale in the Greater Horn of Africa (the region 10°S–15°N, 30°–52°E). New findings regarding a post-1998 increase in drought frequency during the March–May (MAM) “long rains” are also reported. The period 1950–2010 is emphasized, although rainfall and SST data from 1901–2010 are used to place the recent long rains decline in a multidecadal context. For the latter case, climate model simulations and isolated basin SST experiments are also utilized. Climatologically, rainfall exhibits a unimodal June–August (JJA) maximum in west-central Ethiopia with a generally bimodal [MAM and October–December (OND) maxima] distribution in locations to the south and east. Emphasis will be on these three seasons. SST anomalies in the tropical Pacific and Indian Oceans show the strongest association with drought during OND in locations having a bimodal annual cycle, with weaker associations during MAM. The influence of the El Niño–Southern Oscillation (ENSO) phenomenon critically depends on its ability to affect SSTs outside the Pacific. Salient features of the anomalous atmospheric circulation during drought events in different locations and seasons are discussed. The post-1998 decline in the long rains is found to be driven strongly (although not necessarily exclusively) by natural multidecadal variability in the tropical Pacific rather than anthropogenic climate change. This conclusion is supported by observational analyses and climate model experiments, which are presented.


2007 ◽  
Vol 20 (18) ◽  
pp. 4548-4571 ◽  
Author(s):  
Tristan S. L’Ecuyer ◽  
Graeme L. Stephens

Abstract The impact of clouds and precipitation on the climate is a strong function of their spatial distribution and microphysical properties, characteristics that depend, in turn, on the environments in which they form. Simulating feedbacks between clouds, precipitation, and their surroundings therefore places an enormous burden on the parameterized physics used in current climate models. This paper uses multisensor observations from the Tropical Rainfall Measuring Mission (TRMM) to assess the representation of the response of regional energy and water cycles in the tropical Pacific to the strong 1998 El Niño event in (Atmospheric Model Intercomparison Project) AMIP-style simulations from the climate models that participated in the Intergovernmental Panel on Climate Change’s (IPCC’s) most recent assessment report. The relationship between model errors and uncertainties in their representation of the impacts of clouds and precipitation on local energy budgets is also explored. With the exception of cloud radiative impacts that are often overestimated in both regions, the responses of atmospheric composition and heating to El Niño are generally captured in the east Pacific where the SST forcing is locally direct. Many models fail, however, to correctly predict the magnitude of induced trends in the west Pacific where the response depends more critically on accurate representation of the zonal atmospheric circulation. As a result, a majority of the models examined do not reproduce the apparent westward transport of energy in the equatorial Pacific during the 1998 El Niño event. Furthermore, the intermodel variability in the responses of precipitation, total heating, and vertical motion is often larger than the intrinsic ENSO signal itself, implying an inherent lack of predictive capability in the ensemble with regard to the response of the mean zonal atmospheric circulation in the tropical Pacific to ENSO. While ENSO does not necessarily provide a proxy for anthropogenic climate change, the results suggest that deficiencies remain in the representation of relationships between radiation, clouds, and precipitation in current climate models that cannot be ignored when interpreting their predictions of future climate.


2020 ◽  
pp. 1-50
Author(s):  
Lei Zhang ◽  
Gang Wang ◽  
Matthew Newman ◽  
Weiqing Han

AbstractThe Indian Ocean has received increasing attention for its large impacts on regional and global climate. However, sea surface temperature (SST) variability arising from Indian Ocean internal processes has not been well understood particularly on decadal and longer timescales, and the external influence from the Tropical Pacific has not been quantified. This paper analyzes the interannual-to-decadal SST variability in the Tropical Indian Ocean in observations and explores the external influence from the Pacific versus internal processes within the Indian Ocean using a Linear Inverse Model (LIM). Coupling between Indian Ocean and tropical Pacific SST anomalies (SSTAs) is assessed both within the LIM dynamical operator and the unpredictable stochastic noise that forces the system. Results show that the observed Indian Ocean Basin (IOB)-wide SSTA pattern is largely a response to the Pacific ENSO forcing, although it in turn has a damping effect on ENSO especially on annual and decadal timescales. On the other hand, the Indian Ocean Dipole (IOD) is an Indian Ocean internal mode that can actively affect ENSO; ENSO also has a returning effect on the IOD, which is rather weak on decadal timescale. The third mode is partly associated with the Subtropical Indian Ocean Dipole (SIOD), and it is primarily generated by Indian Ocean internal processes, although a small component of it is coupled with ENSO. Overall, the amplitude of Indian Ocean internally generated SST variability is comparable to that forced by ENSO, and the Indian Ocean tends to actively influence the tropical Pacific. These results suggest that the Indian-Pacific Ocean interaction is a two-way process.


2020 ◽  
Vol 117 (49) ◽  
pp. 30988-30992
Author(s):  
Jianping Zhang ◽  
Houyuan Lu ◽  
Jiwei Jia ◽  
Caiming Shen ◽  
Shuyun Wang ◽  
...  

The cause of seasonal hydrologic changes in tropical East Asia during interstadial/stadial oscillations of the last glaciation remains controversial. Here, we show seven seasonal drought events that occurred during the relatively warm interstadials by phytolith and pollen records. These events are significantly manifested as high percentages of bilobate phytoliths and are consistent with the large zonal sea-surface temperature (SST) gradient from the western to eastern tropical Pacific, suggesting that the reduction in seasonal precipitation could be interpreted by westward shifts of the western Pacific subtropical high triggered by changes of zonal SST gradient over the tropical Pacific and Hadley circulation in the Northern Hemisphere. Our findings highlight that both zonal and meridional ocean–atmosphere circulations, rather than solely the Intertropical Convergence Zone or El Niño-Southern Oscillation, controlled the hydrologic changes in tropical East Asia during the last glaciation.


2021 ◽  
pp. 1-57
Author(s):  
Hong-Chang Ren ◽  
Jinqing Zuo ◽  
Weijing Li

AbstractThe interannual variability of boreal summer sea surface temperature (SST) in the tropical Atlantic displays two dominant modes, the Atlantic zonal mode highlighting SST variations in the equatorial–southern tropical Atlantic (ESTA) region and the northern tropical Atlantic (NTA) mode focusing on SST fluctuations in the NTA region except in the Gulf of Guinea. Observational evidence indicates that both the boreal summer ESTA and NTA warming are accompanied by a pair of anomalous low-level anti-cyclones over the western tropical Pacific, and the NTA-related anti-cyclone is more obvious than the ESTA-related one. Both atmosphere-only and partially coupled experiments conducted with the Community Earth System Model Version 1.2 support the observed NTA–Pacific teleconnection. In contrast, the ESTA-induced atmospheric circulation response is negligible over the tropical Pacific in the atmosphere-only experiments, and though the response becomes stronger in the partially coupled experiments, obvious difference still exists between the simulations and observation. The ESTA-induced atmospheric circulation response is featured by an anomalous low-level cyclone over the western tropical Pacific in the partially coupled experiments, opposite to its observed counterpart. It is found that the ESTA warming coincides with significantly La Niña-like SST anomalies in the central–eastern equatorial Pacific, the influence of which on the tropical atmospheric circulation is opposite to that of the ESTA warming, and therefore contributes to difference between the ESTA-related simulations and observation. Moreover, the cold climatological mean SST in the ESTA region is unfavourable to enhancing the ESTA–Pacific teleconnection during boreal summer.


2012 ◽  
Vol 25 (15) ◽  
pp. 5361-5373 ◽  
Author(s):  
Tao Lian ◽  
Dake Chen

Abstract As an effective eigen method for phenomenon identification and space reduction, empirical orthogonal function (EOF) analysis is widely used in climate research. However, because of its orthorgonality constraint, EOF analysis has a tendency to produce unphysical modes. Previous studies have shown that the drawbacks of EOF analysis could be partly alleviated by rotated EOF (REOF) analysis, but such studies are always based on specific cases. This paper provides a thorough statistical evaluation of REOF analysis by comparing its ability with that of EOF analysis in reproducing a large number of randomly selected stationary modes of variability. The synthetic experiments indicate that REOF analysis is overwhelmingly a better choice in terms of accuracy and effectiveness, especially for picking up localized patterns. When applied to the tropical Pacific sea surface temperature variability, REOF and EOF analyses show obvious discrepancies, with the former making much better physical sense. This challenges the validity of the so-called sea surface temperature cooling mode and the spatial structure of “El Niño Modoki,” both of which are recently identified by EOF analysis. At any rate, one has to be cautious when claiming new discoveries of climate modes based on EOF analysis alone.


Sign in / Sign up

Export Citation Format

Share Document