N ‐acetylcysteine use as an adjuvant to bone cement to fight periprosthetic joint infections: A preliminary in vitro efficacy and biocompatibility study

Author(s):  
Kamolsak Sukhonthamarn ◽  
Jeongeun Cho ◽  
Emanuele Chisari ◽  
Karan Goswami ◽  
William V. Arnold ◽  
...  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wongthawat Liawrungrueang ◽  
Suwipa Ungphaiboon ◽  
Arnurai Jitsurong ◽  
Natnicha Ingviya ◽  
Boonsin Tangtrakulwanich ◽  
...  

Abstract Background Antibiotic-loaded bone cement, or antibiotic-impregnated polymethylmethacrylate (PMMA), were developed to prevent and treat bone and joint infections. Gentamicin is an antibiotic that is commonly used in combination with PMMA; however, gentamicin powder is hard to obtain in many countries. This study aimed to evaluate the elution characteristics of gentamicin-impregnated PMMA made with lyophilized liquid gentamicin, compared with PMMA; which is made from commercial gentamicin powder. Methods The experimental sample was divided into 2 groups: the gentamicin power group (PG-PMMA) and the lyophilized liquid gentamicin group (LG-PMMA). Ten cement spacers were prepared in each group. These were produced by mixing gentamicin powder, or lyophilized liquid gentamicin, with a powder polymer before adding the liquid monomer (2 g of gentamicin and 40 g of PMMA). The volume and surface area of the antibiotic-impregnated cement spacers were 50 cm3 and 110 cm2, respectively. Each spacer was immersed in phosphate-buffered saline, which was changed daily under sterile conditions. The solutions were collected to measure the level of gentamicin using the enzyme multiplied immunoassay technique (EMIT), at days 1, 2, 3, 4, 5, 6, 7, 14, 21, 28, 35 and 42. Results The collections from both groups had high concentrations of gentamicin on day 1 (113.63 ± 23.42 mg/dL in LG-PMMA and 61.7 ±8.37 mg/dL in PG-PMMA), but experienced a continuous decrease over time. The PMMA spacers from both groups could release gentamicin for up to 6 weeks (3.28 ± 1.17 mg/dL in LG-PMMA and 1.21 ± 0.28 mg/dL in PG-PMMA). However, there were significantly higher levels of gentamicin concentrations in the LG-PMMA group compared to the PG-PMMA group at all time points (P< 0.05). Conclusion Gentamicin-impregnated PMMA made with lyophilized liquid gentamicin had approximately a two times higher rate of antibiotic elution in preliminary in vitro studies, as compared with PMMA made with premixed gentamicin powder.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 26
Author(s):  
Victoria Wall ◽  
Thi-Hiep Nguyen ◽  
Nghi Nguyen ◽  
Phong A. Tran

Bone cement is used as a mortar for securing bone implants, as bone void fillers or as spacers in orthopaedic surgery. Antibiotic-loaded bone cements (ALBCs) have been used to prevent and treat prosthetic joint infections by providing a high antibiotic concentration around the implanted prosthesis. High antibiotic concentrations are, on the other hand, often associated with tissue toxicity. Controlling antibiotic release from ALBCS is key to achieving effective infection control and promoting prosthesis integration with the surrounding bone tissue. However, current ALBCs still need significant improvement in regulating antibiotic release. In this review, we first provide a brief introduction to prosthetic joint infections, and the background concepts of therapeutic efficacy and toxicity in antibiotics. We then review the current state of ALBCs and their release characteristics before focusing on the research and development in controlling the antibiotic release and osteo-conductivity/inductivity. We then conclude by a discussion on the need for better in vitro experiment designs such that the release results can be extrapolated to predict better the local antibiotic concentrations in vivo.


2021 ◽  
Vol 49 (1) ◽  
pp. 185-193
Author(s):  
Ateeque Ur Rehman ◽  
Muhammad Hassan ◽  
Sadia Bano ◽  
Khizir Farooq ◽  
Aun Raza ◽  
...  

2010 ◽  
Vol 23 (1) ◽  
pp. 14-34 ◽  
Author(s):  
Graeme N. Forrest ◽  
Kimberly Tamura

SUMMARY The increasing emergence of antimicrobial-resistant organisms, especially methicillin-resistant Staphylococcus aureus (MRSA), has resulted in the increased use of rifampin combination therapy. The data supporting rifampin combination therapy in nonmycobacterial infections are limited by a lack of significantly controlled clinical studies. Therefore, its current use is based upon in vitro or in vivo data or retrospective case series, all with major limitations. A prominent observation from this review is that rifampin combination therapy appears to have improved treatment outcomes in cases in which there is a low organism burden, such as biofilm infections, but is less effective when effective surgery to obtain source control is not performed. The clinical data support rifampin combination therapy for the treatment of prosthetic joint infections due to methicillin-sensitive S. aureus (MSSA) after extensive debridement and for the treatment of prosthetic heart valve infections due to coagulase-negative staphylococci. Importantly, rifampin-vancomycin combination therapy has not shown any benefit over vancomycin monotherapy against MRSA infections either clinically or experimentally. Rifampin combination therapy with daptomycin, fusidic acid, and linezolid needs further exploration for these severe MRSA infections. Lastly, an assessment of the risk-benefits is needed before the addition of rifampin to other antimicrobials is considered to avoid drug interactions or other drug toxicities.


2006 ◽  
Vol 309-311 ◽  
pp. 801-804 ◽  
Author(s):  
S.B. Cho ◽  
Akari Takeuchi ◽  
Ill Yong Kim ◽  
Sang Bae Kim ◽  
Chikara Ohtsuki ◽  
...  

In order to overcome the disadvantage of commercialized PMMA bone cement, we have developed novel PMMA-based bone cement(7P3S) reinforced by 30 wt.% of bioactive CaO-SiO2 gel powders to induce the bioactivity as well as to increase mechanical property for the PMMA bone cement. The novel 7P3S bone cement hardened after mixing for about 7 minutes. For in vitro evaluation, apatite forming ability of it was investigated using SBF. When the novel 7P3S bone cement was soaked into SBF, it formed apatite on its surfaces within 1 week Furthermore; there is no decrease in its compressive strength within 9 weeks soaking in SBF. It is though that hardly decrease in compressive strength of 7P3S bone cement in SBF is due to the relative small amount of gel powder or its spherical shape and monosize. In vivo evaluation of the novel 7P3S bone cement was carried out using rabbit. After implantion into rabbit tibia for several periods, the interface between novel bone cement and natural bone was evaluated by CT images. According to the results, the novel bone cement directly contact to the natural bone without fibrous tissue after implantation for 4 weeks. This results indicates that the newly developed 7P3S bone cement can bond to the living bone and also be effectively used as bioactive bone cement without decrease in mechanical property.


Sign in / Sign up

Export Citation Format

Share Document