Effects of the middle Holocene high sea‐level stand and climate on Amazonian mangroves

Author(s):  
Marcelo C. L. Cohen ◽  
Paloma Maria Pinto Camargo ◽  
Luiz C. R. Pessenda ◽  
Flávio Lima Lorente ◽  
Adriana V. De Souza ◽  
...  
Keyword(s):  
2020 ◽  
Vol 11 (1) ◽  
pp. 230
Author(s):  
Hoil Lee ◽  
Jin-Young Lee ◽  
Seungwon Shin

We obtained a 15 m drill core from Deukryang Bay on the southwest coast of Korea, which is now an area of reclaimed land used for agriculture. We investigated changes in the depositional environment and hydrological climate responses to sea level changes using sedimentary facies, radiocarbon ages, grain-size analysis, total organic carbon (TOC), total sulfur (TS), and stable carbon isotopes (δ13C). Sediment deposition began at 12,000 cal yr BP and was divided into four stages based on changes from fluvial to intertidal environments related to Holocene marine transgression events. Stage 1 (>10,000 cal yr BP) is represented by fluvial sediments; Stage 2 (10,000–7080 cal yr BP) is represented by the deposition of mud facies in an intertidal zone in response to sea level rise; Stage 3 (7080–3300 cal yr BP) was a period of gradually descending sea level following the Holocene maximum sea level and is characterized by gradual changes in TOC, TS, and C/S ratios compared with the mud facies of Stage 2. Stage 4 (3300 to present) was deposited in a supratidal zone and contains low TS and an abundance of TOC. Based on our TS and C/S ratio results, the south coast of Korea was mainly affected by sea level rise between 7000 and 3000 cal yr BP, during the middle Holocene. At 3000 cal yr BP, sea level began to stabilize or gradually decrease. In addition, changes in δ13C values are clearly observed since ca. 5000 cal yr BP, in particular, large hydrological changes via freshwater input are confirmed in 4000–3000 cal yr BP. We consider these shifts in freshwater input indicators of an increased influence of El Niño and La Niña conditions, related to the weakening of the East Asian Summer Monsoon (EASM) and changes in sea surface temperature (SST) of the Western Pacific Ocean during the middle Holocene climatic optimum (between 7800 and 5000 cal yr BP). The cooling periods of SST in East Asia between 8400 and 6600 cal yr BP reported from the west coast of Korea are related closely to changes in vegetation (as evidenced by δ13C) from 7700 cal yrs BP to the present in the southwest coast of Korea. We interpret the freshwater input events at 4000–3000 cal yr BP to be related to changes in SST in response to the weakening of the EASM on the southwest coast of Korea. However, additional research is needed to study the southward migration effect of the westerly jet related to SST and atmospheric circulation controlling terrestrial climate in the middle Holocene.


The Holocene ◽  
2017 ◽  
Vol 28 (3) ◽  
pp. 354-362 ◽  
Author(s):  
Lan Li ◽  
Cheng Zhu ◽  
Zhen Qin ◽  
Michael J Storozum ◽  
Tristram R Kidder

Boreas ◽  
2008 ◽  
Vol 31 (2) ◽  
pp. 185-202
Author(s):  
DAVID E. SMITH ◽  
CALLUM R. FIRTH ◽  
ROBIN A. CULLINGFORD

2020 ◽  
Vol 233 ◽  
pp. 106249 ◽  
Author(s):  
Haixian Xiong ◽  
Yongqiang Zong ◽  
Tanghua Li ◽  
Tengwen Long ◽  
Guangqing Huang ◽  
...  

Polar Record ◽  
2008 ◽  
Vol 44 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Naja Mikkelsen ◽  
Antoon Kuijpers ◽  
Jette Arneborg

ABSTRACTNorse immigrants from Europe settled in southern Greenland in around AD 985 and managed to create a farming community during the Medieval Warm Period. The Norse vanished after approximately 500 years of existence in Greenland leaving no documentary evidence concerning why their culture foundered. The flooding of fertile grassland caused by late Holocene sea-level changes may be one of the factors that affected the Norse community. Holocene sea-level changes in Greenland are closely connected with the isostatic response of the Earth's crust to the behaviour of the Greenlandic ice sheet. An early Holocene regressive phase in south and west Greenland was reversed during the middle Holocene, and evidence is found for transgression and drowning of early-middle Holocene coast lines. This drowning started between 8 and 7ka BP in southern Greenland and continued during the Norse era to the present. An average late Holocene sea level rise in the order of 2–3 m/1000 years may be one of the factors that negatively affected the life of the Norse Greenlanders, and combined with other both socio-economic and environmental problems, such as increasing wind and sea ice expansion at the transition to the Little Ice Age, may eventually have led to the end of the Norse culture in Greenland.


2009 ◽  
Vol 66 (1-2) ◽  
pp. 19-33 ◽  
Author(s):  
Stéphane Desruelles ◽  
Éric Fouache ◽  
Attila Ciner ◽  
Rémi Dalongeville ◽  
Kosmas Pavlopoulos ◽  
...  

Boreas ◽  
2002 ◽  
Vol 31 (2) ◽  
pp. 185-202 ◽  
Author(s):  
David E. Smith ◽  
Callum R. Firth ◽  
Robin A. Cullingford

2017 ◽  
Vol 91 (6) ◽  
pp. 1102-1122 ◽  
Author(s):  
Xue Ke ◽  
Baohua Li ◽  
Zongyan Zhang ◽  
Yi Wei ◽  
Fei Hu ◽  
...  

AbstractThree gravity cores (LZK1, ZKA4, and CSJA6) from the incised Yangtze paleo-valley comprise a thick sequence of the post-glacial deposit. Nineteen genera (26 species) of the benthic foraminifers are described from these cores, with detailed down-core foraminiferal variations to investigate their paleoenvironmental implications. Three foraminiferal assemblages are recognized for the lower, middle, and upper parts of the cores respectively. The lower part is dominated byAmmonia beccariivar. andFlorilus decoruswith lower abundance and diversity. In the middle part, the foraminifers are abundant and diverse, dominated by bothAmmonia beccariivar. andElphidium advenum.Cavarotalia annectens,Pararotalia nipponica, and porcellaneous benthic foraminiferal forms are always present, sometimes abundant. The upper part is characterized by theAmmonia beccarii-Elphidium magellanicumassemblage, except for the Core ZKA4, which is barren of foraminifers in this interval. AMS14C dates and foraminiferal assemblages both confirm that the transgression-regression sequence in these cores belongs to the “Ammoniatransgression” during the Holocene. In addition to documenting the post-glacial sea-level fluctuations, the benthic foraminifers also reflect a warmer climate during the early–middle Holocene. The foraminiferal differences among the three cores can be used to interpret the influence of seawater during the post-glacial sea-level fluctuations. The area in the vicinity of Core ZKA4 was affected by marine water only during the middle Holocene, which was much shorter than the areas of the other cores.


Sign in / Sign up

Export Citation Format

Share Document