scholarly journals Annulus fibrosus cell sheets limit disc degeneration in a rat annulus fibrosus injury model

JOR Spine ◽  
2019 ◽  
Vol 2 (2) ◽  
Author(s):  
Tadashi Nukaga ◽  
Daisuke Sakai ◽  
Jordy Schol ◽  
Masato Sato ◽  
Masahiko Watanabe
Author(s):  
John McMorran ◽  
Diane Gregory

Abstract In light of the correlation between chronic back pain and intervertebral disc degeneration, this literature review seeks to illustrate the importance of the hydraulic response across the nucleus pulposus- annulus fibrosus interface, by synthesizing current information regarding injurious biomechanics of the spine, stemming from axial compression. Damage to vertebrae, endplates, the nucleus pulposus, and the annulus fibrosus, can all arise from axial compression, depending on the segment's posture, the manner in which it is loaded, and the physiological state of tissue. Therefore, this movement pattern was selected to illustrate the importance of the bracing effect of a pressurized nucleus pulposus on the annulus fibrosus, and how injuries interrupting support to the annulus fibrosus may contribute to intervertebral disc degeneration.


2012 ◽  
Vol 2 (1) ◽  
pp. 6 ◽  
Author(s):  
Marie Klauser ◽  
Franck Forterre ◽  
Marcus Doherr ◽  
Andreas Zurbriggen ◽  
David Spreng ◽  
...  

Disc degeneration occurs commonly in dogs. A variety of factors is thought to contribute an inappropriate disc matrix that isolate cells in the disc and lead to apoptosis. Disc herniation with radiculopathy and discogenic pain are the results of the degenerative process. The objective of this prospective study was to determine the extent of apoptosis in intact and herniated intervertebral discs of chondrodystrophic dogs and non-chondrodystrophic dogs. In addition, the nucleus pulposus (NP) was histologically compared between non-chondrodystrophic and chondrodystrophic dogs. Thoracolumbar intervertebral discs and parts of the extruded nucleus pulposus were harvested from 45 dogs. Samples were subsequently stained with haematoxylin-eosin and processed to detect cleaved caspase-3 and poly(ADP-ribose) polymerase. A significant greater degree of apoptosis was observed in herniated NPs of chondrodystrophic dogs compared to non- chondrodystrophic dogs with poly (ADP-ribose) polymerase and cleaved caspase- 3 detection. Within the group of chondrodystrophic dogs, dogs with an intact disc and younger than 6 years showed a significant lower incidence of apoptosis in the NP compared to the herniated NP of chondrodystrophic dogs. The extent of apoptosis in the annulus fibrosus was not different between the intact disc from chondrodystrophic and non- chondrodystrophic dogs. An age-related increase of apoptotic cells in NP and annulus fibrosus was found in the intact non-herniated intervertebral discs. Histologically, absence of notochordal cells and occurrence of chondroid metaplasia were observed in the nucleus pulposus of chondrodystrophic dogs. As a result, we found that apoptosis plays a role in disc degeneration in chondrodystrophic dogs.


Author(s):  
Daniel H. Cortes ◽  
Lachlan J. Smith ◽  
Sung M. Moon ◽  
Jeremy F. Magland ◽  
Alexander C. Wright ◽  
...  

Intervertebral disc degeneration is characterized by a progressive cascade of structural, biochemical and biomechanical changes affecting the annulus fibrosus (AF), nucleus pulposus (NP) and end plates (EP). These changes are considered to contribute to the onset of back pain. It has been shown that mechanical properties of the AF and NP change significantly with degeneration [1,2]. Therefore, mechanical properties have the potential to serve as a biomarker for diagnosis of disc degeneration. Currently, disc degeneration is diagnosed based on the detection of structural and compositional changes using MRI, X-ray, discography and other imaging techniques. These methods, however, do not measure directly the mechanical properties of the extracellular matrix of the disc. Magnetic Resonance Elastography (MRE) is a technique that has been used to measure in vivo mechanical properties of soft tissue by applying a mechanical vibration and measuring displacements with a motion-sensitized MRI pulse sequence [3]. The mechanical properties (e.g., the shear modulus) are calculated from the displacement field using an inverse method. Since the applied displacements are in the order of few microns, fibers may not be stretched enough to remove crimping. Therefore, it is unknown if the anisotropy of the AF due to the contribution of the fibers is detectable using MRE. The objective of this study is twofold: to measure shear properties of AF in different orientations to determine the degree of AF anisotropy observable by MRE, and to identify the contribution of different AF constituents to the measured shear modulus by applying different biochemical treatments.


2007 ◽  
Vol 20 (01) ◽  
pp. 12-17 ◽  
Author(s):  
A. Baranto ◽  
A. Kaigle Holm ◽  
L. Ekström ◽  
L. Swärd ◽  
T. Hansson ◽  
...  

SummaryDegenerative and reactive structural alterations occurring after experimentally-induced disc degeneration were evaluated using a porcine model. A cranial perforation was made through the L4 vertebral endplate into the nucleus pulposus. Three months later, the lumbar intervertebral disc and adjacent vertebrae were dissected, fixed in formalin and further processed for histopathological analyses. The results showed that there were nucleus pulposus fragments, rather than a distinct border between the nucleus and annulus fibrosus. The central lamellae were distorted and delamination of the outer anterior layers was observed. Blood vessels emerged from the adjacent tissue, penetrated the annulus and branched into the residues of the nucleus. Nerve fibres accompanying the blood vessels could be recognized in the disc within the connective scar tissue. The epiphyseal cartilage plates in the vertebrae were hypertrophic in several areas and there was bone formation directed towards the centre of the vertebral body and the disc. Hypertrophic hyaline cartilage, newly formed bone and scar tissue filled the injury canal. A slight chronic inflammatory reaction was evident along vascular buds. The reactive changes dominated over the degenerated features in the operated disc. Physiological loading enhanced the infiltration of various tissue types characterizing immature cartilage formation. Prominent neovascularisation of the central parts of the disc is likely to be of key importance in turning the degenerative features of the remaining tissue into reactive healthy structures.


Neurosurgery ◽  
2019 ◽  
Vol 66 (Supplement_1) ◽  
Author(s):  
Sertac Kirnaz ◽  
Stephen Sloan ◽  
Christoph Wipplinger ◽  
Franziska Anna Schmidt ◽  
Roger Hartl ◽  
...  

Abstract INTRODUCTION The objective of the current study is to assess the efficacy of combined annulus fibrosus (AF) using a high-density collagen (HDC) gel and nucleus pulposus (NP) repair using a hyaluronic acid (HA) gel in an in Vivo sheep model. METHODS We performed an anterolateral, retroperitoneal prepsoas approach to access the IVDs L1-6 in a total of 8 skeletally mature Finn sheep. IVDs were randomized into 5 groups: (1) intact, (2) injured via 3 × 10 mm box annulotomy and removal of 200 mg of NP, (3) injury and HDC gel patch for AF repair, (4) injury and injection of a HA gel into the NP, and (5) injury and HDC AF repair and NP HA replacement. At 6 wk postoperatively, sheep were sacrificed and underwent postmortem 3T-MRI scans as well as gross anatomical and histological evaluation. Disc height index (DHI) analysis and Pfirrmann grading (PG) were performed on each segment using MR images. RESULTS Intact control discs were not degenerated and had an average PG of 1 while injured, and untreated discs had a significant degeneration with an average PG of 3. Discs receiving the combined injection and collagen AF patch individually showed fewer signs of degeneration than injured alone, and the combined treatment resulted in the least amount of degeneration with PG not significantly different from the intact controls. DHI confirmed the trends seen in the PG, where injured discs lost 20% of the intact disc height, the individual NP and AF repairs restored 5% to 10% of intact disc height, and the combined repairs preserved 90% of the intact disc height. CONCLUSION PG and DHI results demonstrate that individual NP and AF repairs are able to prevent disc degeneration better than no treatment at all; however, the greatest preservation of disc health was seen with combined AF and NP repairs.


Sign in / Sign up

Export Citation Format

Share Document