scholarly journals A Feynman integral in Lifshitz‐point and Lorentz‐violating theories in

2018 ◽  
Vol 41 (5) ◽  
pp. 2220-2246 ◽  
Author(s):  
R. B. Paris ◽  
M. A. Shpot
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Jacob L. Bourjaily ◽  
Andrew J. McLeod ◽  
Cristian Vergu ◽  
Matthias Volk ◽  
Matt von Hippel ◽  
...  

1982 ◽  
Vol 21 ◽  
Author(s):  
G. v. Gehlen

ABSTRACTFinite-size scaling is applied to the Hamiltonian version of the asymmetric Z3-Potts model. Results for the phase boundary of the commensurate region and for the corresponding critical index ν are presented. It is argued that there is no Lifshitz point, the incommensurate phase extending down to small values of the asymmetry parameter.


Entropy ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 26
Author(s):  
Young Sik Kim

We investigate the partial derivative approach to the change of scale formula for the functon space integral and we investigate the vector calculus approach to the directional derivative on the function space and prove relationships among the Wiener integral and the Feynman integral about the directional derivative of a Fourier transform.


Sign in / Sign up

Export Citation Format

Share Document