scholarly journals In vivo detection of 2-hydroxyglutarate in brain tumors by optimized point-resolved spectroscopy (PRESS) at 7T

2016 ◽  
Vol 77 (3) ◽  
pp. 936-944 ◽  
Author(s):  
Sandeep K. Ganji ◽  
Zhongxu An ◽  
Vivek Tiwari ◽  
Sarah McNeil ◽  
Marco C. Pinho ◽  
...  
2013 ◽  
Vol 72 (2) ◽  
pp. 316-323 ◽  
Author(s):  
Changho Choi ◽  
Sandeep K. Ganji ◽  
Akshay Madan ◽  
Keith M. Hulsey ◽  
Zhongxu An ◽  
...  

2013 ◽  
Vol 26 (10) ◽  
pp. 1242-1250 ◽  
Author(s):  
Changho Choi ◽  
Sandeep Ganji ◽  
Keith Hulsey ◽  
Akshay Madan ◽  
Zoltan Kovacs ◽  
...  

2011 ◽  
Vol 66 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Alex X. Li ◽  
Mojmir Suchy ◽  
Chunhui Li ◽  
Joseph S. Gati ◽  
Susan Meakin ◽  
...  

1991 ◽  
Vol 65 (04) ◽  
pp. 432-437 ◽  
Author(s):  
A W J Stuttle ◽  
M J Powling ◽  
J M Ritter ◽  
R M Hardisty

SummaryThe anti-platelet monoclonal antibody P256 is currently undergoing development for in vivo detection of thrombus. We have examined the actions of P256 and two fragments on human platelet function. P256, and its divalent fragment, caused aggregation at concentrations of 10−9−3 × 10−8 M. A monovalent fragment of P256 did not cause aggregation at concentrations up to 10−7 M. P256–induced platelet aggregation was dependent upon extracellular calcium ions as assessed by quin2 fluorescence. Indomethacin partially inhibited platelet aggregation and completely inhibited intracellular calcium mobilisation. Apyrase caused partial inhibition of aggregation. Aggregation induced by the divalent fragment was dependent upon fibrinogen and was inhibited by prostacyclin. Aggregation induced by the whole antibody was only partially dependent upon fibrinogen, but was also inhibited by prostacyclin. P256 whole antibody was shown, by flow cytometry, to induce fibrinogen binding to indomethacin treated platelets. Monovalent P256 was shown to be a specific antagonist for aggregation induced by the divalent forms. In–111–labelled monovalent fragment bound to gel-filtered platelets in a saturable and displaceable manner. Monovalent P256 represents a safer form for in vivo applications


2019 ◽  
Vol 15 (5) ◽  
pp. 567-574
Author(s):  
Huck Jun Hong ◽  
Suw Young Ly

Background: Tetrodotoxin (TTX) is a biosynthesized neurotoxin that exhibits powerful anticancer and analgesic abilities by inhibiting voltage-gated sodium channels that are crucial for cancer metastasis and pain delivery. However, for the toxin’s future medical applications to come true, accurate, inexpensive, and real-time in vivo detection of TTX remains as a fundamental step. Methods: In this study, highly purified TTX extracted from organs of Takifugu rubripes was injected and detected in vivo of mouse organs (liver, heart, and intestines) using Cyclic Voltammetry (CV) and Square Wave Anodic Stripping Voltammetry (SWASV) for the first time. In vivo detection of TTX was performed with auxiliary, reference, and working herring sperm DNA-immobilized carbon nanotube sensor systems. Results: DNA-immobilization and optimization of amplitude (V), stripping time (sec), increment (mV), and frequency (Hz) parameters for utilized sensors amplified detected peak currents, while highly sensitive in vivo detection limits, 3.43 µg L-1 for CV and 1.21 µg L-1 for SWASV, were attained. Developed sensors herein were confirmed to be more sensitive and selective than conventional graphite rodelectrodes modified likewise. A linear relationship was observed between injected TTX concentration and anodic spike peak height. Microscopic examination displayed coagulation and abnormalities in mouse organs, confirming the powerful neurotoxicity of extracted TTX. Conclusion: These results established the diagnostic measures for TTX detection regarding in vivo application of neurotoxin-deviated anticancer agents and analgesics, as well as TTX from food poisoning and environmental contamination.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i7-i7
Author(s):  
Jiaojiao Deng ◽  
Sophia Chernikova ◽  
Wolf-Nicolas Fischer ◽  
Kerry Koller ◽  
Bernd Jandeleit ◽  
...  

Abstract Leptomeningeal metastasis (LM), a spread of cancer to the cerebrospinal fluid and meninges, is universally and rapidly fatal due to poor detection and no effective treatment. Breast cancers account for a majority of LMs from solid tumors, with triple-negative breast cancers (TNBCs) having the highest propensity to metastasize to LM. The treatment of LM is challenged by poor drug penetration into CNS and high neurotoxicity. Therefore, there is an urgent need for new modalities and targeted therapies able to overcome the limitations of current treatment options. Quadriga has discovered a novel, brain-permeant chemotherapeutic agent that is currently in development as a potential treatment for glioblastoma (GBM). The compound is active in suppressing the growth of GBM tumor cell lines implanted into the brain. Radiolabel distribution studies have shown significant tumor accumulation in intracranial brain tumors while sparing the adjacent normal brain tissue. Recently, we have demonstrated dose-dependent in vitro and in vivo anti-tumor activity with various breast cancer cell lines including the human TNBC cell line MDA-MB-231. To evaluate the in vivo antitumor activity of the compound on LM, we used the mouse model of LM based on the internal carotid injection of luciferase-expressing MDA-MB-231-BR3 cells. Once the bioluminescence signal intensity from the metastatic spread reached (0.2 - 0.5) x 106 photons/sec, mice were dosed i.p. twice a week with either 4 or 8 mg/kg for nine weeks. Tumor growth was monitored by bioluminescence. The compound was well tolerated and caused a significant delay in metastatic growth resulting in significant extension of survival. Tumors regressed completely in ~ 28 % of treated animals. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, Quadriga’s new agent could be effective as a therapeutic for both primary and metastatic brain tumors such as LM. REF: https://onlinelibrary.wiley.com/doi/full/10.1002/pro6.43


ACS Sensors ◽  
2021 ◽  
Author(s):  
Xiaofang Wang ◽  
Tianci Xu ◽  
Yue Zhang ◽  
Nan Gao ◽  
Taotao Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document