Finite element modeling of spherical indentation in a poro‐elasto‐plastic medium via step displacement loading

Author(s):  
Ming Liu ◽  
Haiying Huang
2006 ◽  
Vol 317-318 ◽  
pp. 293-296
Author(s):  
Roman Nowak ◽  
Ari T. Hirvonen ◽  
Tohru Sekino

The present paper is based on the contribution by Niihara and his co-workers devoted to indentation testing of ceramic materials, while it provides new observations of peculiarities registered during nanoindentation of sapphire, GaAs and InGaNAs deposited by MBE-technique. Exploiting previous studies of the spherical indentation in sapphire, the present authors recognized different causes that result in the apparently similar pop-in phenomenon for sapphire and GaAs-based semiconductors. The finite element modeling of the quasi-plastic nanoindentation of the ( 1 1 20) plane of sapphire with the elastically deformable tip confirmed that the deformation of sapphire is governed by twinning which causes pop-in phenomenon, as suggested earlier by Niihara et al. The singularities registered for GaAs-based crystals are associated with dislocation movement within {111} slip bands, which is in contrast to the case of sapphire.


1991 ◽  
Vol 3 (1) ◽  
pp. 235-253 ◽  
Author(s):  
L. D. Philipp ◽  
Q. H. Nguyen ◽  
D. D. Derkacht ◽  
D. J. Lynch ◽  
A. Mahmood

1993 ◽  
Vol 21 (1) ◽  
pp. 23-39 ◽  
Author(s):  
R. W. Scavuzzo ◽  
T. R. Richards ◽  
L. T. Charek

Abstract Tire vibration modes are known to play a key role in vehicle ride, for applications ranging from passenger cars to earthmover equipment. Inputs to the tire such as discrete impacts (harshness), rough road surfaces, tire nonuniformities, and tread patterns can potentially excite tire vibration modes. Many parameters affect the frequency of tire vibration modes: tire size, tire construction, inflation pressure, and operating conditions such as speed, load, and temperature. This paper discusses the influence of these parameters on tire vibration modes and describes how these tire modes influence vehicle ride quality. Results from both finite element modeling and modal testing are discussed.


1987 ◽  
Vol 15 (1) ◽  
pp. 30-41 ◽  
Author(s):  
E. G. Markow

Abstract Development of the banded radial tire is discussed. A major contribution of this tire design is a reliable run-flat capability over distances exceeding 160 km (100 mi). Experimental tire designs and materials are considered; a brief theoretical discussion of the mechanics of operation is given based on initial two-dimensional studies and later on more complete finite element modeling. Results of laboratory tests for cornering, rolling resistance, and braking are presented. Low rolling resistance, good cornering and braking properties, and low tread wear rate along with good puncture resistance are among the advantages of the banded radial tire designs.


Sign in / Sign up

Export Citation Format

Share Document