Transient juvenile myelomonocytic leukemia in the setting of PTPN11 mutation and Noonan syndrome with secondary development of monosomy 7

2017 ◽  
Vol 64 (7) ◽  
pp. e26408 ◽  
Author(s):  
Katrina O'Halloran ◽  
A. Kim Ritchey ◽  
Miroslav Djokic ◽  
Erika Friehling
Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3417-3417 ◽  
Author(s):  
Christian P. Kratz ◽  
Charlotte M. Niemeyer ◽  
Bruce D. Gelb ◽  
Marco Tartaglia ◽  
Mignon L. Loh

Abstract Somatic, heterozygous missense mutations in the PTPN11 proto-oncogene encoding SHP-2 are identified in 35% of patients with juvenile myelomonocytic leukemia (JMML). Other non-syndromic hematologic malignancies in which somatic PTPN11 mutations have been detected are pediatric myelodysplastic syndrome, acute monocytic leukemia (FAB-M5 AML) and common or B-cell precursor acute lymphoblastic leukemia. Germline PTPN11 mutations are found in 50% of patients with Noonan syndrome (NS), an autosomal dominant disorder characterized by facial anomalies, short stature and congenital heart defects. Infants with NS are predisposed to developing JMML (NS/JMML); however, the course of NS/JMML tends to be milder and self-resolving. JMML that is not associated with NS have a poor prognosis and are currently being treated with intensive regimens such stem cell transplantation. Differentiating JMML from NS/JMML is of critical clinical relevance and also provides interesting questions about the pathogenesis of these diseases. To that end, we have compared the spectrum of mutations in patients with isolated JMML, NS/JMML and NS alone. The assembly of all known published and unpublished germline and somatic exon 3 and 13 PTPN11 mutations detected in ours and other laboratories (78 pts with PTPN11 mutation positive isolated JMML; 18 pts with PTPN11 mutation positive NS/JMML) reveal that the identity of the affected residues or the type of substitution differ between NS and JMML, even though the resulting molecular defects appear to be functionally similar. In NS defects in exons 4, 7 and 8 account for approximately one-half of cases. On the contrary, mutations affecting these exons are rarely identified in JMML. A few germline NS-causative mutations affect the same residues of SHP-2 that are also altered by somatic mutations in non-syndromic JMML. In almost all of the cases, the germline and somatic mutations affecting identical residues differ with respect to the amino acid substitution. There are 2 major hot spots: 7 out of 18 patients (39%) with NS/JMML carry the T73I substitution. In isolated JMML the E76K mutation is detected most often (18 out of 78 patients (23%)). We describe 2 novel JMML mutations (E76M, G503V) and 2 novel NS/JMML mutations (R598W, S502A). Six mutations associated with isolated NS are also observed in NS/JMML. These findings imply the presence of a germline mutation needs to be excluded in all mutation positive neonates with presumed isolated JMML. In addition, our findings raise a number of research questions: First, are somatic PTPN11 mutations alone sufficient to initate leukemia and what are the molecular factors influencing the consequences of a PTPN11 mutation in hematopoietic cells? Second, do identical mutations have different consequences on cell fate of hematopoetic cells depending on whether they occur as germline or somatic events? Do some patients with isolated NS and PTPN11 mutation develop transient myeloproliferation of hematopoetic cells which may be subtle and unrecognised?


2013 ◽  
Vol 37 ◽  
pp. S93-S94
Author(s):  
A. Eischen ◽  
C. Paillard ◽  
M. Besse ◽  
A. Spiegel ◽  
P. Lutz ◽  
...  

2020 ◽  
Vol 48 (8) ◽  
pp. 030006052093644
Author(s):  
Meng Li ◽  
Jinghui Zhang ◽  
Nianzheng Sun

We report a case of a Chinese neonate who was diagnosed with Noonan syndrome and had persistent, self-limited thrombocytopenia. The neonate was admitted to the Neonatology Department 20 minutes after birth because of respiratory distress. From birth until 2 months of age, platelet values fluctuated between approximately 6 and 30 × 109/L. There was no intracranial hemorrhage. However, the child had a transient hypocalcemic seizure and fever. We excluded thrombocytopenia caused by perinatal asphyxia, immune thrombocytopenia, fetomaternal alloimmune thrombocytopenia, juvenile myelomonocytic leukemia, and chromosome 13, 18, and 21 trisomy syndromes. Despite treatment with anti-infective agents and transfusion of platelets and immunoglobulin, the platelet count did not return to the normal range. Genetic testing confirmed a PTPN11 gene mutation, which led to the diagnosis of Noonan syndrome. At 3 months of age, the platelet count gradually increased without intervention and returned to the normal range by 6 months. We speculate that the thrombocytopenia in this case was closely related to Noonan syndrome.


Blood ◽  
1999 ◽  
Vol 93 (2) ◽  
pp. 459-466 ◽  
Author(s):  
Sandra Luna-Fineman ◽  
Kevin M. Shannon ◽  
Susan K. Atwater ◽  
Jeffrey Davis ◽  
Margaret Masterson ◽  
...  

Abstract Myelodysplastic syndromes (MDS) and myeloproliferative syndromes (MPS) of childhood are a heterogeneous group of clonal disorders of hematopoiesis with overlapping clinical features and inconsistent nomenclature. Although a number of genetic conditions have been associated with MDS and MPS, the overall contribution of inherited predispositions is uncertain. We report a retrospective study examining clinical features, genetic associations, and outcomes in 167 children with MDS and MPS. Of these patients, 48 had an associated constitutional disorder. One hundred one patients had adult-type myelodysplastic syndrome (A-MDS), 60 had juvenile myelomonocytic leukemia (JMML), and 6 infants with Down syndrome had a transient myeloproliferative syndrome (TMS). JMML was characterized by young age at onset and prominent hepatosplenomegaly, whereas patients with A-MDS were older and had little or no organomegaly. The most common cytogenetic abnormalities were monosomy 7 or del(7q) (53 cases); this was common both in patients with JMML and those with A-MDS. Leukemic transformation was observed in 32% of patients, usually within 2 years of diagnosis. Survival was 25% at 16 years. Favorable prognostic features at diagnosis included age less than 2 years and a hemoglobin F level of less than 10%. Older patients tended to present with an adult-type MDS that is accommodated within the French-American-British system. In contrast, infants and young children typically developed unique disorders with overlapping features of MDS and MPS. Although the type and intensity of therapy varied markedly in this study, the overall outcome was poor except in patients with TMS.


Leukemia ◽  
2004 ◽  
Vol 18 (6) ◽  
pp. 1142-1144 ◽  
Author(s):  
H Shimada ◽  
T Mori ◽  
N Shimasaki ◽  
K Shimizu ◽  
T Takahashi ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1528-1528 ◽  
Author(s):  
Nao Yoshida ◽  
Hiroshi Yagasaki ◽  
Ayami Yoshimi ◽  
Yoshiyuki Takahashi ◽  
Yinyan Xu ◽  
...  

Abstract Juvenile myelomonocytic leukemia (JMML) is a rare clonal myeloproliferative disorder that affects young children. It is characterized by specific hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Mutations in RAS, NF1, or PTPN11 positioned in the GM-CSF signal pathway, are thought to be involved in the pathogenesis of JMML. However, no information is available on the relationship between these mutations and clinical features of JMML. The impacts of these mutations on clinical outcome also remain unclear. We tested 49 Japanese children with JMML for N-RAS, K-RAS, and PTPN11 mutations and evaluated their clinical significance. We also assessed correlations between mutational status and clinical and laboratory findings, including age at diagnosis, fetal hemoglobin (HbF), platelet count, and cytogenetic abnormality, all which have been proposed as prognostic factors for JMML. Of the 49 JMML patients, cytogenetic abnormalities were detected in 13, including 8 with monosomy 7. For 2 patients, a clinical diagnosis of neurofibromatosis type 1 (NF1) was confirmed. PTPN11 and N-/K-RAS mutations were found in 22 (45%) and 8 (16%) patients, respectively. Neither PTPN11 nor RAS mutations nor NF1 were present in 17 (35%) patients, and no simultaneous aberrations in these genes were found. In patients with the PTPN11 mutation, age at diagnosis was older (35 vs 11 months; P=0.001, or 12 months; P<0.01) and HbF level was higher (31 vs 10%; P=0.03, or 16%; P<0.01) than for patients with the RAS mutation or without any aberration, suggesting that the clinical outcome for patients with the PTPN11 mutation might be poorer, because a higher HbF level and older age have been reported to be poor prognostic factors. In fact, overall survival (OS) at 5 years was lower for patients with the PTPN11 mutation than for those without (20±9% vs 58±9%; P=0.02). In addition to PTPN11 mutation, age older than 24 months (P<0.01) and abnormal karyotype (P=0.02) were also associated with poor prognosis for OS. Of the 49 patients, 33 received stem cell transplantation (SCT). OS probabilities for patients with and without a mutation in PTPN11 at 5 years after SCT were 25±10% and 64±12%, respectively (P=0.04). More importantly, mutation in PTPN11 was the only unfavorable factor for relapse after SCT (P<0.01). Seven patients died owing to relapse and 12 from complications. All patients who died after relapse had a PTPN11 mutation. In summary, our results suggest that PTPN11-mutated JMML might be a distinct subgroup with specific clinical characteristics and a poor outcome.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 1526-1526
Author(s):  
Elliot Stieglitz ◽  
Y. Lucy Liu ◽  
Peter D. Emanuel ◽  
Robert P. Castleberry ◽  
Todd Michael Cooper ◽  
...  

Abstract Germline mutations in GATA2, a gene that encodes for transcription factors involved in hematopoiesis and vascular development, have recently been described in MonoMAC syndrome, Emberger syndrome and in select cases of mild chronic neutropenia. These disorders are unified by their predisposition to myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Patients with MonoMAC syndrome have also been noted to display monosomy 7 in their bone marrows in up to 50% of cases. Overexpression of GATA2 due to somatic mutations in cases of de novo pediatric AML, has also been shown to be a negative predictor of outcome. Juvenile myelomonocytic leukemia is a rare childhood malignancy with overlapping features of MDS and myeloproliferative neoplasm (MPN) that can transform to AML and is characterized by hyperactive RAS signaling. Mutations in NF1, NRAS, KRAS, PTPN11, and CBL are found in 85-90% of newly diagnosed patients, and monosomy 7 is the most common recurrent karyotypic abnormality seen in JMML. We therefore hypothesized that mutations in GATA2 may play a role in the development of JMML. Samples from 57 patients with JMML were screened for GATA2 mutations. Patient samples and clinical data were collected from the Children's Oncology Group (COG) trial AAML0122. DNA was extracted as per previous protocols from peripheral blood or bone marrow and whole genome amplified using Qiagen REPLI-g kit according to manufacturer specifications. We performed bidirectional Sanger sequencing (Beckman Coulter Genomics) of the entire coding region of GATA2 (NM_001145661.1) and aligned the sequences using CLC Workbench software (CLC Bio, Aarhus, Denmark). Only missense, splice site or nonsense mutations were evaluated using SIFT (Sorting Tolerant From Intolerant) to predict the impact on the structure and function of identified mutations on the protein. Patient J384 was found to have a nonsense point mutation at c.988C>T (R330X) in the N-terminal region of the zinc finger portion of the protein (Figure 1a). This hotspot mutation has been reported in several patients with mild chronic neutropenia who displayed a predisposition to developing MDS and AML. The patient was also found to have a missense point mutation at c.962T>G (L321R) predicted to be damaging by SIFT. Subcloning of the gene using a TA cloning kit with pCR 2.1 vector (Invitrogen), followed by direct sequencing of individual colony picks, revealed that the two sequence variants only occurred in a trans configuration. Out of 40 amplicons sequenced, 20 were found to have the c.988C>T transition, 16 were found to be have the c.962T>G variant, and four were found to be wild type. We therefore hypothesize that the c.988C>T was inherited as a germline event and that c.962T>G was somatically acquired in the majority of the remaining wild type alleles. No other point mutations or insertions/deletions were discovered in this cohort.Figure 1Identification of 2 distinct GATA2 mutations in patient J384.Figure 1. Identification of 2 distinct GATA2 mutations in patient J384. This patient was previously identified to have a KRAS G12D mutation (c.35G>A) as well as monosomy 7. This patient died prior to undergoing transplant within months of diagnosis. While the patient technically met criteria for the diagnosis of JMML, it should be noted there were several atypical features, including older age at diagnosis (4 years and 10 months), and absence of hypersensitivity in myeloid progenitor cells to the cytokine granulocyte–macrophage colony stimulating factor (GM-CSF) in colony assay. This raises the possibility that patient J384 actually had MonoMAC syndrome with MDS and not JMML. This represents the first description of a GATA2 mutation in a patient suspected of having JMML. To our knowledge, this is the first report of a biallelic mutation in GATA2, combining a germline mutation with somatic acquisition. In addition, MonoMAC syndrome has not been reported to be associated with KRAS mutations to date. GATA2 mutations should therefore be considered in patients with atypical features of MDS or JMML. Panel (a) Bidirectional sequencing of patient sample J384 revealed two distinct sequence variants in both the forward (shown here) and reverse strands. Panel (b) Sequencing of 40 individual colony picks revealed that each sequence variant occurred in a trans configuration (CP 9 and CP13 are shown here as examples). In addition, 10% of colony picks (i.e. CP 32) revealed a wild type sequence, indicating that at least one of the two variants was a somatic event. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document