Tailoring of thermal and mechanical properties of hollow glass bead‐filled polypropylene porous Films via stretching ratio and filler content

2018 ◽  
Vol 40 (7) ◽  
pp. 2938-2945
Author(s):  
Fatemeh Barzegari ◽  
Jalil Morshedian ◽  
Mohammad Razavi‐Nouri ◽  
Milad Karbalaei‐Bagher
2019 ◽  
Vol 800 ◽  
pp. 210-215
Author(s):  
Walid Fermas ◽  
Mustapha Kaci ◽  
Remo Merijs Meri ◽  
Janis Zicans

In this paper, the effect of unmodified halloysite nanotubes (HNTs) content on the chemical structure and the thermal and mechanical properties of blends based on starch-grafted-polyethylene (SgP) and high density polyethylene (HDPE) (70/30 w/w) nanocomposites was investigated at various filler content ratios, i.e. 1.5, 3 and 5 wt.%. The study showed the occurrence of chemical interactions between the polymer matrix and HNTs through OH bonding. Further, the addition of HNTs to the polymer blend led to an increase in the crystallization temperature of the nanocomposite samples, in particular at higher filler contents i.e. 3 and 5 wt.%, while the melting temperature remained almost unchanged. Tensile and flexural properties of the nanocomposite samples were however improved compared to the virgin blend with respect to the HNTs content ratio.


Author(s):  
Sylvie Ribeiro ◽  
Tânia Ribeiro ◽  
Clarisse Ribeiro ◽  
Daniela M. Correia ◽  
João P. Sequeira Farinha ◽  
...  

Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of varying diameter (17, 100, 160 and 300 nm) which in turn have encapsulated perylenediimide (PDI), a fluorescent molecule. Structural, morphological, optical, thermal, and mechanical properties of the nanocomposites, with SiNP filler concentration up to 16 wt% were evaluated. Further, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively charged independently of the pH and more stable from pH 5 upwards. The SiNPs introduction within the polymer matrix increases the contact angle independently of the nanoparticle diameters and the smallest ones (17 nm) improve the PVDF Young modulus from 0.94 ± 0.04 GPa for the pristine polymer film to 1.05 ± 0.06 GPa. Varying filler diameter, physico-chemical, thermal and mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and proliferation studies reveal that the prepared composites represent a suitable platform for tissue engineering applications, as they allow to combine the biocompatibility and piezoelectricity of the polymer with the possible functionalization and drug encapsulation and release of the SiNP.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 933 ◽  
Author(s):  
Sylvie Ribeiro ◽  
Tânia Ribeiro ◽  
Clarisse Ribeiro ◽  
Daniela Correia ◽  
José Farinha ◽  
...  

Poly(vinylidene fluoride) nanocomposites processed with different morphologies, such as porous and non-porous films and fibres, have been prepared with silica nanoparticles (SiNPs) of varying diameter (17, 100, 160 and 300 nm), which in turn have encapsulated perylenediimide (PDI), a fluorescent molecule. The structural, morphological, optical, thermal, and mechanical properties of the nanocomposites, with SiNP filler concentration up to 16 wt %, were evaluated. Furthermore, cytotoxicity and cell proliferation studies were performed. All SiNPs are negatively charged independently of the pH and more stable from pH 5 upwards. The introduction of SiNPs within the polymer matrix increases the contact angle independently of the nanoparticle diameter. Moreover, the smallest ones (17 nm) also improve the PVDF Young’s modulus. The filler diameter, physico-chemical, thermal and mechanical properties of the polymer matrix were not significantly affected. Finally, the SiNPs’ inclusion does not induce cytotoxicity in murine myoblasts (C2C12) after 72 h of contact and proliferation studies reveal that the prepared composites represent a suitable platform for tissue engineering applications, as they allow us to combine the biocompatibility and piezoelectricity of the polymer with the possible functionalization and drug encapsulation and release of the SiNP.


2019 ◽  
Vol 8 (1) ◽  
pp. 935-943
Author(s):  
Luis Miguel Araque ◽  
Ana Carolina Lemos de Morais ◽  
Tatianny Soares Alves ◽  
Joyce Batista Azevedo ◽  
Laura Hecker Carvalho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document