scholarly journals ARF5/MONOPTEROS directly regulates miR390 expression in the Arabidopsis thaliana primary root meristem

Plant Direct ◽  
2019 ◽  
Vol 3 (2) ◽  
pp. e00116 ◽  
Author(s):  
Mouli Ghosh Dastidar ◽  
Andrea Scarpa ◽  
Ira Mägele ◽  
Paola Ruiz-Duarte ◽  
Patrick von Born ◽  
...  
Development ◽  
1995 ◽  
Vol 121 (1) ◽  
pp. 53-62 ◽  
Author(s):  
B. Scheres ◽  
L. Di Laurenzio ◽  
V. Willemsen ◽  
M. T. Hauser ◽  
K. Janmaat ◽  
...  

The primary root of Arabidopsis thaliana has a remarkably uniform cellular organisation. The fixed radial pattern of cell types in the mature root arises from proliferative divisions within the root meristem. The root meristem, in turn, is laid down during embryogenesis. We have analysed six mutations causing alterations in the radial organisation of the root. Embryonic phenotypes resulting from wooden leg, gollum, pinocchio, scarecrow, shortroot and fass mutations are described. While mutations in the fass gene affect morphogenesis of all cells, the five other mutations cause alterations in specific layers. Wooden leg and gollum mutations interfere with the proper organisation of the vascular tissue. Shortroot, scarecrow and pinocchio affect the endodermis and cortex. The layer- specific phenotypes caused by all five mutations are also apparent in the hypocotyl. All these phenotypes originate from defects in the radial organisation of the embryonic axis. Secondary roots, which are formed post-embryonically, also display layer-specific phenotypes.


Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 249
Author(s):  
Weimiao Liu ◽  
Liai Xu ◽  
Hui Lin ◽  
Jiashu Cao

The growth of plant cells is inseparable from relaxation and expansion of cell walls. Expansins are a class of cell wall binding proteins, which play important roles in the relaxation of cell walls. Although there are many members in expansin gene family, the functions of most expansin genes in plant growth and development are still poorly understood. In this study, the functions of two expansin genes, AtEXPA4 and AtEXPB5 were characterized in Arabidopsis thaliana. AtEXPA4 and AtEXPB5 displayed consistent expression patterns in mature pollen grains and pollen tubes, but AtEXPA4 also showed a high expression level in primary roots. Two single mutants, atexpa4 and atexpb5, showed normal reproductive development, whereas atexpa4atexpb5 double mutant was defective in pollen tube growth. Moreover, AtEXPA4 overexpression enhanced primary root elongation, on the contrary, knocking out AtEXPA4 made the growth of primary root slower. Our results indicated that AtEXPA4 and AtEXPB5 were redundantly involved in pollen tube growth and AtEXPA4 was required for primary root elongation.


Planta ◽  
2011 ◽  
Vol 234 (6) ◽  
pp. 1163-1177 ◽  
Author(s):  
Alejandra Hernández-Barrera ◽  
Yamel Ugartechea-Chirino ◽  
Svetlana Shishkova ◽  
Selene Napsucialy-Mendivil ◽  
Aleš Soukup ◽  
...  

ISRN Botany ◽  
2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Eri Adams ◽  
Celine Diaz ◽  
Minami Matsui ◽  
Ryoung Shin

Plants have developed mechanisms to adapt to the potassium deficient conditions over the years. In Arabidopsis thaliana, expression of a potassium transporter HAK5 is induced in low potassium conditions as an adaptive response to nutrient deficiency. In order to understand the mechanism in which HAK5 is regulated, the full-length cDNA overexpressor gene hunting system was employed as a screening method. Of 40 genes recovered, At4g18280 was found to be dramatically induced in response to potassium-deficiency and salt stress. Plants overexpressing this gene showed higher HAK5 expression and enhanced growth. These plants were also less sensitive to potassium-deficiency in terms of primary root growth. Taken together, these data suggest that this novel component, At4g18280, contributes to regulation of HAK5 and, consequently, tolerance to potassium-deficiency in plants.


2020 ◽  
Vol 11 ◽  
Author(s):  
Luciano M. Di Fino ◽  
Ignacio Cerrudo ◽  
Sonia R. Salvatore ◽  
Francisco J. Schopfer ◽  
Carlos García-Mata ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document