Radiation-induced polymerization of glass-forming systems. III. Effect of melting point and glass transition temperature on the formation of the glassy phase

1972 ◽  
Vol 10 (9) ◽  
pp. 2661-2675 ◽  
Author(s):  
Isao Kaetsu ◽  
Hiroshi Okubo ◽  
Akihiko Ito ◽  
Koichiro Hayashi
Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 954
Author(s):  
Xavier Monnier ◽  
Sara Marina ◽  
Xabier Lopez de Pariza ◽  
Haritz Sardón ◽  
Jaime Martin ◽  
...  

The present work aims to provide insights on recent findings indicating the presence of multiple equilibration mechanisms in physical aging of glasses. To this aim, we have investigated a glass forming polyether, poly(1-4 cyclohexane di-methanol) (PCDM), by following the evolution of the enthalpic state during physical aging by fast scanning calorimetry (FSC). The main results of our study indicate that physical aging persists at temperatures way below the glass transition temperature and, in a narrow temperature range, is characterized by a two steps evolution of the enthalpic state. Altogether, our results indicate that the simple old-standing view of physical aging as triggered by the α relaxation does not hold true when aging is carried out deep in the glassy state.


1979 ◽  
Vol 52 (1) ◽  
pp. 207-212 ◽  
Author(s):  
M. Bruzzone ◽  
E. Sorta

Abstract In a great number of applications an ideal elastomer should satisfy, to a certain extent, both of the following requirements: (1) nearly instantaneous crystallization upon application of strain (strain induced crystallization) and (2) slow or no crystallization when cooled at the temperature of maximum crystallization rate (cold induced crystallization). A noteworthy case of (2) is elastomer crystallization in a strained state. The connection between the points (1) and (2) has not been clearly understood up to now, but it is known that some crystallizable elastomers fulfil the requirements of both (1) and (2) better than others. From an experimental point of view, cold induced crystallization kinetics are substantially easier to measure than those of very fast strain induced crystallization. The phenomenon of cold induced crystallization in natural rubber, NR, has been known since the very beginning of elastomer technology and the tendency of natural rubber to crystallize by cooling has been overcome by crosslinking it with sulphur (vulcanization) without impairing its ability to crystallize by stretching (Goodyear, 1836). The synthesis of cis-polyisoprenes (IR) and cis-polybutadiene (BR) of different microstructural purity (different cis content) gave the possibility of changing the crystallization rate. It has also been reported that the very fast cold crystallization of trans-polypentenamer (TPA) could be reduced by lowering the trans content. The same fact had been observed earlier for trans-polychloroprene. There is a general agreement in postulating that the reduction of the crystallization rate, obtained either by cross-linking or by chain regularity reduction, can be linked with the lowering of the melting point. In both cases the low level of structural defects introduced in the chains does not affect the glass transition temperature in such a way as to vary the crystallization rate. The aim of this paper is to emphasize the importance of the variations of the glass transition temperature and melting point on the elastomeric cold crystallization rate and the way these may be used in planning new elastomer structures.


Pharmaceutics ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 425 ◽  
Author(s):  
Edueng ◽  
Bergström ◽  
Gråsjö ◽  
Mahlin

This study shows the importance of the chosen method for assessing the glass-forming ability (GFA) and glass stability (GS) of a drug compound. Traditionally, GFA and GS are established using in situ melt-quenching in a differential scanning calorimeter. In this study, we included 26 structurally diverse glass-forming drugs (i) to compare the GFA class when the model drugs were produced by spray-drying with that when melt-quenching was used, (ii) to investigate the long-term physical stability of the resulting amorphous solids, and (iii) to investigate the relationship between physicochemical properties and the GFA of spray-dried solids and their long-term physical stability. The spray-dried solids were exposed to dry (<5% RH) and humid (75% RH) conditions for six months at 25 °C. The crystallization of the spray-dried solids under these conditions was monitored using a combination of solid-state characterization techniques including differential scanning calorimetry, Raman spectroscopy, and powder X-ray diffraction. The GFA/GS class assignment for 85% of the model compounds was method-dependent, with significant differences between spray-drying and melt-quenching methods. The long-term physical stability under dry condition of the compounds was predictable from GFA/GS classification and glass transition and crystallization temperatures. However, the stability upon storage at 75% RH could not be predicted from the same data. There was no strong correlation between the physicochemical properties explored and the GFA class or long-term physical stability. However, there was a slight tendency for compounds with a relatively larger molecular weight, higher glass transition temperature, higher crystallization temperature, higher melting point and higher reduced glass transition temperature to have better GFA and better physical stability. In contrast, a high heat of fusion and entropy of fusion seemed to have a negative impact on the GFA and physical stability of our dataset.


2020 ◽  
Vol 22 (32) ◽  
pp. 17948-17959
Author(s):  
Hubert Hellwig ◽  
Andrzej Nowok ◽  
Jan Grzegorz Małecki ◽  
Piotr Kuś ◽  
Agnieszka Jędrzejowska ◽  
...  

The dielectric properties, glass transition temperature and molecular dynamics of thiacrown ethers are strongly dependent on the thiacrown ring type.


2003 ◽  
Vol 18 (3) ◽  
pp. 664-671 ◽  
Author(s):  
Y. Zhang ◽  
H. Tan ◽  
H. Z. Kong ◽  
B. Yao ◽  
Y. Li

A eutectic point in Pr-rich Pr-(Cu,Ni)-Al alloys was experimentally determined by measuring the solidus temperature (Tm) and liquidus temperature (T1). It was found that Pr68(Cu0.5Ni0.5)25Al7 (at.%) is at the eutectic composition in the pseudoternary Pr–(Cu0.5Ni0.5)–Al alloys. The alloy Pr68(Cu0.5Ni0.5)25Al7 exhibits better glass-forming ability (GFA) than the ternary eutectic alloy Pr68Cu25Al7. However, the best GFA was obtained at an off-eutectic composition (Pr54[Cu0.5Ni0.5]30Al16) in the Pr–(Cu0.5Ni0.5)–Al alloys, which can be formed in fully amorphous rods with diameter of 1.5 mm by copper mold casting. Moreover, the glass-transition temperature Tg increases quickly (from 367 to 522 K) with the increasing of the Al content (from 3 to 27 at.%). The deviation of the best GFA composition from the eutectic point [Pr68(Cu0.5Ni0.5)25Al7] was explained in terms of the asymmetric coupled eutectic zone, the competition between growth of crystalline phase and formation of amorphous, and the higher glass-transition temperature Tg on the hypereutectic side.


Sign in / Sign up

Export Citation Format

Share Document