Parametrizing the Antarctic stable boundary layer: synthesizing models and observations

2016 ◽  
Vol 142 (699) ◽  
pp. 2373-2385 ◽  
Author(s):  
K. T. Walesby ◽  
R. J. Beare
2018 ◽  
Vol 18 (5) ◽  
pp. 3755-3778 ◽  
Author(s):  
William Neff ◽  
Jim Crawford ◽  
Marty Buhr ◽  
John Nicovich ◽  
Gao Chen ◽  
...  

Abstract. Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole (SP) during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2005, 2006–2007). Together, analyses of the data collected from these studies provide insight into the large- to small-scale meteorology that sets the stage for extremes in NO and the significant variability that occurs day to day, within seasons, and year to year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: initially in early spring (Days 280–310) the transport of warm air and clouds over West Antarctica dominates the environment over the SP; in late spring (Days 310–340), the winds at 300 hPa exhibit a bimodal behavior alternating between northwest and southeast quadrants, which is of significance to NO; in early summer (Days 340–375), the flow aloft is dominated by winds from the Weddell Sea; and finally, during late spring, winds aloft from the southeast are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east – it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly, although the last twenty years have seen an increasing trend in easterly surface winds at the SP. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for high accumulation of NO. This may occur via the non-linear HOX–NOx chemistry proposed after the first ISCAT field programs and NOx recycling to the surface where quantum yields may be large under the low-snow-accumulation regime of the Antarctic plateau. During the 2003 field program a sodar made direct measurements of the stable boundary layer depth (BLD), a key factor in explaining the chemistry of the high NO concentrations. Because direct measurements were not available in the other years, we developed an estimator for BLD using direct observations obtained in 2003 and step-wise linear regression with meteorological data from a 22 m tower (that was tested against independent data obtained in 1993). These data were then used with assumptions about the column abundance of NO to estimate surface fluxes of NOx. These results agreed in magnitude with results at Concordia Station and confirmed significant daily, intraseasonal and interannual variability in NO and its flux from the snow surface. Finally, we found that synoptic to mesoscale eddies governed the boundary layer circulation and accumulation pathways for NO at the SP rather than katabatic forcing. It was the small-scale features of the circulation including the transition from cloudy to clear conditions that set the stage for short-term extremes in NO, whereas larger-scale features were associated with more moderate concentrations.


2017 ◽  
Author(s):  
William Neff ◽  
Jim Crawford ◽  
Marty Buhr ◽  
John Nicovich ◽  
Gao Chen ◽  
...  

Abstract. Four summer seasons of nitrogen oxide (NO) concentrations were obtained at the South Pole during the Sulfur Chemistry in the Antarctic Troposphere (ISCAT) program (1998 and 2000) and the Antarctic Tropospheric Chemistry Investigation (ANTCI) in (2003, 2006–7). Together, analyses of their data here provide insight into the large-to-small scale meteorology that sets the stage for high NO and the significant variability that occurs day-to-day, within seasons and year-to-year. In addition, these observations reveal the interplay between physical and chemical processes at work in the stable boundary layer of the high Antarctic plateau. We found a systematic evolution of the large-scale wind system over the ice sheet from winter to summer that controls the surface boundary layer and its effect on NO: Initially in early spring (Days 280–310) the transport of warm air and clouds over West Antarctica dominates the environment over the South Pole; In late spring (Days 310–340), of significance to NO, the winds at 300-hPa exhibit a bimodal behavior alternating between NW and SE; In early summer (Days 340–375), the flow aloft is dominated by winds from the Weddell Sea. During late spring, winds aloft from the SE are strongly associated with clear skies, shallow stable boundary layers, and light surface winds from the east: it is under these conditions that the highest NO occurs. Examination of the winds at 300 hPa from 1961 to 2013 shows that this seasonal pattern has not changed significantly although the last twenty years have seen an increasing trend in easterly surface winds at the South Pole. What has also changed is the persistence of the ozone hole, often into early summer. With lower total ozone column density and higher sun elevation, the highest actinic flux responsible for the photolysis of snow nitrate now occurs in late spring under the shallow boundary layer conditions optimum for high accumulation of NO. This may occur via the non-linear HOX-NOX chemistry proposed after the first ISCAT field programs and NOX recycling to the surface where quantum yields may be large under the low-snow-accumulation regime of the Antarctic plateau. During the 2003 field program a sodar made direct measurements of the stable boundary layer depth (BLD), a key factor in explaining the chemistry of the high NO concentrations. Because direct measurements were not available in the other years, we developed an estimator for BLD using direct observations obtained in 2003 and step-wise linear regression with meteorological data from a 22-m tower (that was tested against independent data obtained in 1993). These data were then used with assumptions about the column abundance of NO to estimate surface fluxes of NOX. These results agreed in magnitude with results at Concordia Station and confirmed significant daily, intraseasonal and interannual variability in NO and its flux from the snow surface. Finally, we found that synoptic to mesoscale eddies governed the boundary layer circulation and accumulation pathways for NO at the South Pole rather than katabatic forcing. It was the small scale features of the circulation including the transition from cloudy to clear conditions that set the stage for short-term extremes in NO whereas larger-scale features were associated with more moderate concentrations.


2019 ◽  
Vol 171 (2) ◽  
pp. 151-173 ◽  
Author(s):  
Daniela Cava ◽  
Luca Mortarini ◽  
Domenico Anfossi ◽  
Umberto Giostra

Atmosphere ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 401
Author(s):  
Jonathan Biehl ◽  
Bastian Paas ◽  
Otto Klemm

City centers have to cope with an increasing amount of air pollution. The supply of fresh air is crucial yet difficult to ensure, especially under stable conditions of the atmospheric boundary layer. This case study used the PArallelized Large eddy simulation (LES) Model PALM to investigate the wind field over an urban lake that had once been built as a designated fresh air corridor for the city center of Münster, northwest, Germany. The model initialization was performed using the main wind direction and stable boundary layer conditions as input. The initial wind and temperature profiles included a weak nocturnal low-level jet. By emitting a passive scalar at one point on top of a bridge, the dispersion of fresh air could be traced over the lake’s surface, within street canyons leading to the city center and within the urban boundary layer above. The concept of city ventilation was confirmed in principle, but the air took a direct route from the shore of the lake to the city center above a former river bed and its adjoining streets rather than through the street canyons. According to the dispersion of the passive scalar, half of the city center was supplied with fresh air originating from the lake. PALM proved to be a useful tool to study fresh air corridors under stable boundary layer conditions.


Author(s):  
Lena Pfister ◽  
Karl Lapo ◽  
Larry Mahrt ◽  
Christoph K. Thomas

AbstractIn the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena.


2000 ◽  
Vol 97 (1) ◽  
pp. 1-24 ◽  
Author(s):  
J. J. Holden ◽  
S. H. Derbyshire ◽  
S. E. Belcher

Sign in / Sign up

Export Citation Format

Share Document