scholarly journals Impacts of the ice-cover and sea-surface temperature on a polar low over the Nordic seas: a numerical case study

2011 ◽  
Vol 137 (660) ◽  
pp. 1716-1730 ◽  
Author(s):  
Muralidhar Adakudlu ◽  
Idar Barstad
Author(s):  
Pavel A. Golubkin ◽  
◽  
Julia E. Smirnova ◽  
Vsevolod S. Kolyada ◽  
◽  
...  

In this study possible changes in sea surface temperature (SST) caused by passage of polar lows and analyzed. Polar lows are extreme atmospheric phenomena inherent to high latitudes. They develop sea surface wind speeds from 15 m/s up to hurricane force values and are characterized by small sizes (on average, 300 km) and lifetimes (less than two days), which complicates their detection and studies. It is assumed that as in case of tropical cyclones, which may considerably lower SST due to intense mixing and entrainment of colder waters to the ocean upper mixed layer, polar lows could similarly influence SST. Moreover, in the high latitude areas, where salt stratification may be present instead of temperature stratification, SST may increase due to mixing with deeper warmer layer. In this study 330 polar lows were analyzed using satellite passive microwave radiometer measurements of SST. In result, 47 cases when average SST values changed in polar low forcing areas were found. Out of these cases, in six cases SST increase of at least 0.5 °С was found, and in fifteen cases SST decrease of at least 0.5 °С was found. This indicates that upper ocean response to polar lows is quite rare phenomenon, which should be further analyzed along with its possible role in the ocean-ice-atmosphere system.


Author(s):  
Samee Azmi ◽  
Yogesh Agarwadkar ◽  
Mohor Bhattacharya ◽  
Mugdha Apte ◽  
Arun B. Inamdar

2014 ◽  
Vol 14 (9) ◽  
pp. 4409-4418 ◽  
Author(s):  
J. K. Sweeney ◽  
J. M. Chagnon ◽  
S. L. Gray

Abstract. The sensitivity of sea breeze structure to sea surface temperature (SST) and coastal orography is investigated in convection-permitting Met Office Unified Model simulations of a case study along the south coast of England. Changes in SST of 1 K are shown to significantly modify the structure of the sea breeze immediately offshore. On the day of the case study, the sea breeze was partially blocked by coastal orography, particularly within Lyme Bay. The extent to which the flow is blocked depends strongly on the static stability of the marine boundary layer. In experiments with colder SST, the marine boundary layer is more stable, and the degree of blocking is more pronounced. Although a colder SST would also imply a larger land–sea temperature contrast and hence a stronger onshore wind – an effect which alone would discourage blocking – the increased static stability exerts a dominant control over whether blocking takes place. The implications of prescribing fixed SST from climatology in numerical weather prediction model forecasts of the sea breeze are discussed.


Sign in / Sign up

Export Citation Format

Share Document