Valence bond approach exploiting Clifford algebra realization of Rumer-Weyl basis

1992 ◽  
Vol 41 (1) ◽  
pp. 117-146 ◽  
Author(s):  
Xiangzhu Li ◽  
Josef Paldus
1989 ◽  
Vol 199 ◽  
pp. 85-101 ◽  
Author(s):  
J. Paldus ◽  
S. Rettrup ◽  
C.R. Sarma
Keyword(s):  

2019 ◽  
Author(s):  
Ishita Bhattacharjee ◽  
Debashree Ghosh ◽  
Ankan Paul

The question of quadruple bonding in C<sub>2</sub> has emerged as a hot button issue, with opinions sharply divided between the practitioners of Valence Bond (VB) and Molecular Orbital (MO) theory. Here, we have systematically studied the Potential Energy Curves (PECs) of low lying high spin sigma states of C<sub>2</sub>, N<sub>2</sub> and Be<sub>2</sub> and HC≡CH using several MO based techniques such as CASSCF, RASSCF and MRCI. The analyses of the PECs for the<sup> 2S+1</sup>Σ<sub>g/u</sub> (with 2S+1=1,3,5,7,9) states of C<sub>2</sub> and comparisons with those of relevant dimers and the respective wavefunctions were conducted. We contend that unlike in the case of N<sub>2</sub> and HC≡CH, the presence of a deep minimum in the <sup>7</sup>Σ state of C<sub>2</sub> and CN<sup>+</sup> suggest a latent quadruple bonding nature in these two dimers. Hence, we have struck a reconciliatory note between the MO and VB approaches. The evidence provided by us can be experimentally verified, thus providing the window so that the narrative can move beyond theoretical conjectures.


2020 ◽  
Vol 17 (3) ◽  
pp. 365-371
Author(s):  
Anatoliy Pogorui ◽  
Tamila Kolomiiets

This paper deals with studying some properties of a monogenic function defined on a vector space with values in the Clifford algebra generated by the space. We provide some expansions of a monogenic function and consider its application to study solutions of second-order partial differential equations.


1978 ◽  
Vol 43 (5) ◽  
pp. 1375-1392 ◽  
Author(s):  
Ante Graovac ◽  
Ivan Gutman ◽  
Milan Randić ◽  
Nenad Trinajstić

ChemInform ◽  
2010 ◽  
Vol 26 (40) ◽  
pp. no-no
Author(s):  
P. B. KARADAKOV ◽  
J. GERRATT ◽  
D. L. COOPER ◽  
M. RAIMONDI

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kai Yang ◽  
Soo-Hyon Phark ◽  
Yujeong Bae ◽  
Taner Esat ◽  
Philip Willke ◽  
...  

AbstractDesigning and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations.


Sign in / Sign up

Export Citation Format

Share Document