Combined Near Infrared Photothermal Therapy and Chemotherapy Using Gold Nanoshells Coated Liposomes to Enhance Antitumor Effect

Small ◽  
2016 ◽  
Vol 12 (30) ◽  
pp. 4103-4112 ◽  
Author(s):  
Liyao Luo ◽  
Yanhong Bian ◽  
Yanping Liu ◽  
Xuwu Zhang ◽  
Meili Wang ◽  
...  
Small ◽  
2016 ◽  
Vol 12 (30) ◽  
pp. 4102-4102 ◽  
Author(s):  
Liyao Luo ◽  
Yanhong Bian ◽  
Yanping Liu ◽  
Xuwu Zhang ◽  
Meili Wang ◽  
...  

2016 ◽  
Vol 22 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Kristine M. Mayle ◽  
Kathryn R. Dern ◽  
Vincent K. Wong ◽  
Shijun Sung ◽  
Ke Ding ◽  
...  

Targeted killing of cancer cells by engineered nanoparticles holds great promise for noninvasive photothermal therapy applications. We present the design and generation of a novel class of gold nanoshells with cores composed of self-assembled block copolypeptide vesicles with photothermal properties. Specifically, poly(L-lysine)60- block-poly(L-leucine)20 (K60L20) block copolypeptide vesicles coated with a thin layer of gold demonstrate enhanced absorption of light due to surface plasmon resonance (SPR) in the near-infrared range. We show that the polypeptide-based K60L20 gold nanoshells have low toxicity in the absence of laser exposure, significant heat generation upon exposure to near-infrared light, and, as a result, localized cytotoxicity within the region of laser irradiation in vitro. To gain a better understanding of our gold nanoshells in the context of photothermal therapy, we developed a comprehensive mathematical model for heat transfer and experimentally validated this model by predicting the temperature as a function of time and position in our experimental setup. This model can be used to predict which parameters of our gold nanoshells can be manipulated to improve heat generation for tumor destruction. To our knowledge, our results represent the first ever use of block copolypeptide vesicles as the core material of gold nanoshells.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Shu-Jyuan Yang ◽  
Hsiao-Ting Huang ◽  
Chung-Huan Huang ◽  
Jui-An Pai ◽  
Chung-Hao Wang ◽  
...  

Aim: 7-Ethyl-10-hydroxycamptothecin (SN-38)-loaded gold nanoshells nanoparticles (HSP@Au NPs) were developed for combined chemo-photothermal therapy to treat colorectal cancer. Materials & methods: SN-38-loaded nanoparticles (HSP NPs) were prepared by the lyophilization-hydration method, and then developed into gold nanoshells. The nanoparticles were characterized and assessed for photothermal properties, cytotoxicity and hemocompatibility in vitro. In vivo anticancer activity was tested in a tumor mouse model. Results: The HSP@Au NPs (diameter 186.9 nm, zeta potential 33.4 mV) led to significant cytotoxicity in cancer cells exposed to a near-infrared laser. Moreover, the HSP@Au NP-mediated chemo-photothermal therapy displayed significant tumor growth suppression and disappearance (25% of tumor clearance rate) without adverse side effects in vivo. Conclusion: HSP@Au NPs may be promising in the treatment of colorectal cancer in the future.


Author(s):  
L. Zhu ◽  
A. Attaluri ◽  
N. Manuchehrabadi ◽  
H. Cai ◽  
R. Edziah ◽  
...  

Gold nanoshells or nanorods are newly developed nanotechnology in laser photothermal therapy for cancer treatments in recent years [1–10]. Gold nanoshells consists of a solid dielectric nanoparticle core (∼100 nm) coated by a thin gold shell (∼10 nm). Gold nanorods have a diameter of 10 nm and an aspect ratio of approximately four. Nanorods may be taken up by tumors more readily than nanoshells due to nanorods’ smaller size. By varying the geometric ratio, both nanoshells and nanorods can be tuned to have strong absorption and scattering to a specific laser wavelength. Among a wide range of laser wavelengths, the near infrared (NIR) laser at ∼800 nm is most attractive to clinicians due to its deep optical penetration in tissue. Therefore, the tissue would appear almost “transparent” to the 800 nm laser light before the laser reaches the nanoshells or nanorods in tumors, with minimal laser energy wasted by the tissue without the nanostructures. The laser energy absorbed in an area congregating by the nanostructures is transferred to the surrounding tissue by heat conduction. This approach not only achieves targeted delivery of laser energy to the tumor, but also maximally concentrates a majority of the laser energy to the tumor region.


Nanoscale ◽  
2021 ◽  
Author(s):  
Jinsong Xiong ◽  
Qinghuan Bian ◽  
Shuijin Lei ◽  
Yatian Deng ◽  
Kehan Zhao ◽  
...  

Near-infrared (NIR) light induced photothermal cancer therapy using nanomaterials as photothermal agents has attracted considerable research interest over the past few years. As the key factor in the photothermal therapy...


2021 ◽  
Author(s):  
Haiyan Wu ◽  
Pengpeng Jia ◽  
Yu Zou ◽  
Jiang Jiang

Photothermal therapy, assisted by local heat generation using photothermal nanoparticles (NPs), is an emerging strategy to treat tumors noninvasively. To improve treatment outcome and to alleviate potential side effect on...


2021 ◽  
Vol 4 (2) ◽  
pp. 2019-2029
Author(s):  
Li-Peng Zhang ◽  
Lin Kang ◽  
Xianqiang Li ◽  
Shiyang Liu ◽  
Tianlong Liu ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Yufei Wang ◽  
Hongmin Meng ◽  
Zhaohui Li

The development of robust materials for treating diseases through non-invasive photothermal therapy (PTT) has attracted increasing attention in recent years. Among many types of nanomaterials, inorganic nanomaterials with strong absorption...


Sign in / Sign up

Export Citation Format

Share Document