In Situ Bioorthogonal Metabolic Labeling for Fluorescence Imaging of Virus Infection In Vivo

Small ◽  
2017 ◽  
Vol 13 (17) ◽  
pp. 1604036 ◽  
Author(s):  
Hong Pan ◽  
Wen-jun Li ◽  
Xiang-jie Yao ◽  
Ya-yun Wu ◽  
Lan-lan Liu ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Mingkai Zhang ◽  
Yang Gao ◽  
Jialiang Wang ◽  
Zhanbo Liu ◽  
Zaishun Jin ◽  
...  

In order to determine a particular tumor cell via nanomaterials, we introduce the preparation of CD20 and CD5 coupled nanoprobes (denoted as CD20 and CD5 nanoprobes for convenience) and an application in identification of mantle cell lymphoma (MCL) from B-cell lymphoma. In this work, CD20 and CD5 nanoprobes were prepared by selectively oxidizing the carbon-carbon double bonds of oleate ligands on the surfaces of NaYF4:Yb3+,Tm3+ and NaYF4:Yb3+,Er3+ nanoparticles and, respectively, coupling carboxyl groups on the particles’ surfaces with CD20 and CD5 monoclonal antibodies through EDC/NHS crosslinking agents. After in situ hybridized Jeko-1 cells and Raji cells as a reference with CD20 and CD5 nanoprobes, in vitro double-color upconversion fluorescence imaging of Jeko-1 cells was demonstrated through visualization of blue and green fluorescence under a 980 nm laser excitation. Moreover, in vivo upconversion fluorescence imaging of the transplanted cancer model was also measured. These experimental results indicate that Jeko-1 cells have been specifically labeled by CD20 and CD5 nanoprobes. It is therefore concluded that CD20 and CD5 nanoprobes could be used to specially differentiate mantle cell lymphoma (MCL) from B-cell lymphoma.


Nano Research ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 3059-3068 ◽  
Author(s):  
Zhujun Feng ◽  
Yimeng Yang ◽  
Jian Zhang ◽  
Kan Wang ◽  
Yunxia Li ◽  
...  

2020 ◽  
Vol 6 (36) ◽  
pp. eabb2531
Author(s):  
Liyuan Lin ◽  
Qiuyue Wu ◽  
Jia Song ◽  
Yahui Du ◽  
Juan Gao ◽  
...  

Current techniques for studying gut microbiota are unable to answer some important microbiology questions, like how different bacteria grow and divide in the gut. We propose a method that integrates the use of sequential d-amino acid–based in vivo metabolic labeling with fluorescence in situ hybridization (FISH), for characterizing the growth and division patterns of gut bacteria. After sequentially administering two d-amino acid–based probes containing different fluorophores to mice by gavage, the resulting dual-labeled peptidoglycans provide temporal information on cell wall synthesis of gut bacteria. Following taxonomic identification with FISH probes, the growth and division patterns of the corresponding bacterial taxa, including species that cannot be cultured separately in vitro, are revealed. Our method offers a facile yet powerful tool for investigating the in vivo growth dynamics of the bacterial gut microbiota, which will advance our understanding of bacterial cytology and facilitate elucidation of the basic microbiology of this gut “dark matter.”


Nano Research ◽  
2021 ◽  
Author(s):  
Zhujun Feng ◽  
Yimeng Yang ◽  
Jian Zhang ◽  
Kan Wang ◽  
Yunxia Li ◽  
...  

2003 ◽  
Vol 51 (3) ◽  
pp. 319-330 ◽  
Author(s):  
Eugenia Lamas ◽  
Danielle Chassoux ◽  
Jean-Fran¸ois Decaux ◽  
Christian Brechot ◽  
Pascale Debey

We applied automatic quantitative fluorescence imaging of nuclear DNA to rat liver cells obtained from animals at various times after birth up to 3 months of age. We show that, in conditions best preserving the native cellular structures, DNA content measurements, performed on whole single cells in situ after Hoechst staining, were precise and accurate. Cells in the various ploidy and nuclearity classes could thus be identified correctly and their percentages were estimated on a total of 300 cells or more. DNA synthesis was shown to occur asynchronously in all ploidy and nuclearity classes around weaning time. Observation of the labeling patterns, after in vivo BrdU pulse and short-term culture (chase), showed that the cell cycle was shorter in diploid cells compared with cells undergoing polyploidization. These results show that the approach of fluorescence imaging is well suited to investigations on polyploidization mechanisms.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Greg V. Martin ◽  
Ann L. Hubbard

The microtubule (MT) cytoskeleton is necessary for many of the polarized functions of hepatocytes. Among the functions dependent on the MT-based cytoskeleton are polarized secretion of proteins, delivery of endocytosed material to lysosomes, and transcytosis of integral plasma membrane (PM) proteins. Although microtubules have been shown to be crucial to the establishment and maintenance of functional and structural polarization in the hepatocyte, little is known about the architecture of the hepatocyte MT cytoskeleton in vivo, particularly with regard to its relationship to PM domains and membranous organelles. Using an in situ extraction technique that preserves both microtubules and cellular membranes, we have developed a protocol for immunofluorescent co-localization of cytoskeletal elements and integral membrane proteins within 20 µm cryosections of fixed rat liver. Computer-aided 3D reconstruction of multi-spectral confocal microscope images was used to visualize the spatial relationships among the MT cytoskeleton, PM domains and intracellular organelles.


Sign in / Sign up

Export Citation Format

Share Document