Software reuse analytics using integrated random forest and gradient boosting machine learning algorithm

Author(s):  
Amandeep Kaur Sandhu ◽  
Ranbir Singh Batth
2021 ◽  
Vol 8 ◽  
Author(s):  
Xueyuan Huang ◽  
Yongjun Wang ◽  
Bingyu Chen ◽  
Yuanshuai Huang ◽  
Xinhua Wang ◽  
...  

Background: Predicting the perioperative requirement for red blood cells (RBCs) transfusion in patients with the pelvic fracture may be challenging. In this study, we constructed a perioperative RBCs transfusion predictive model (ternary classifications) based on a machine learning algorithm.Materials and Methods: This study included perioperative adult patients with pelvic trauma hospitalized across six Chinese centers between September 2012 and June 2019. An extreme gradient boosting (XGBoost) algorithm was used to predict the need for perioperative RBCs transfusion, with data being split into training test (80%), which was subjected to 5-fold cross-validation, and test set (20%). The ability of the predictive transfusion model was compared with blood preparation based on surgeons' experience and other predictive models, including random forest, gradient boosting decision tree, K-nearest neighbor, logistic regression, and Gaussian naïve Bayes classifier models. Data of 33 patients from one of the hospitals were prospectively collected for model validation.Results: Among 510 patients, 192 (37.65%) have not received any perioperative RBCs transfusion, 127 (24.90%) received less-transfusion (RBCs < 4U), and 191 (37.45%) received more-transfusion (RBCs ≥ 4U). Machine learning-based transfusion predictive model produced the best performance with the accuracy of 83.34%, and Kappa coefficient of 0.7967 compared with other methods (blood preparation based on surgeons' experience with the accuracy of 65.94%, and Kappa coefficient of 0.5704; the random forest method with an accuracy of 82.35%, and Kappa coefficient of 0.7858; the gradient boosting decision tree with an accuracy of 79.41%, and Kappa coefficient of 0.7742; the K-nearest neighbor with an accuracy of 53.92%, and Kappa coefficient of 0.3341). In the prospective dataset, it also had a food performance with accuracy 81.82%.Conclusion: This multicenter retrospective cohort study described the construction of an accurate model that could predict perioperative RBCs transfusion in patients with pelvic fractures.


2018 ◽  
pp. 1587-1599
Author(s):  
Hiroaki Koma ◽  
Taku Harada ◽  
Akira Yoshizawa ◽  
Hirotoshi Iwasaki

Detecting distracted states can be applied to various problems such as danger prevention when driving a car. A cognitive distracted state is one example of a distracted state. It is known that eye movements express cognitive distraction. Eye movements can be classified into several types. In this paper, the authors detect a cognitive distraction using classified eye movement types when applying the Random Forest machine learning algorithm, which uses decision trees. They show the effectiveness of considering eye movement types for detecting cognitive distraction when applying Random Forest. The authors use visual experiments with still images for the detection.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Peter Appiahene ◽  
Yaw Marfo Missah ◽  
Ussiph Najim

The financial crisis that hit Ghana from 2015 to 2018 has raised various issues with respect to the efficiency of banks and the safety of depositors’ in the banking industry. As part of measures to improve the banking sector and also restore customers’ confidence, efficiency and performance analysis in the banking industry has become a hot issue. This is because stakeholders have to detect the underlying causes of inefficiencies within the banking industry. Nonparametric methods such as Data Envelopment Analysis (DEA) have been suggested in the literature as a good measure of banks’ efficiency and performance. Machine learning algorithms have also been viewed as a good tool to estimate various nonparametric and nonlinear problems. This paper presents a combined DEA with three machine learning approaches in evaluating bank efficiency and performance using 444 Ghanaian bank branches, Decision Making Units (DMUs). The results were compared with the corresponding efficiency ratings obtained from the DEA. Finally, the prediction accuracies of the three machine learning algorithm models were compared. The results suggested that the decision tree (DT) and its C5.0 algorithm provided the best predictive model. It had 100% accuracy in predicting the 134 holdout sample dataset (30% banks) and a P value of 0.00. The DT was followed closely by random forest algorithm with a predictive accuracy of 98.5% and a P value of 0.00 and finally the neural network (86.6% accuracy) with a P value 0.66. The study concluded that banks in Ghana can use the result of this study to predict their respective efficiencies. All experiments were performed within a simulation environment and conducted in R studio using R codes.


Sign in / Sign up

Export Citation Format

Share Document