Morphology, mechanical property, and processing thermal stability of PVC/La‐OMMTs nanocomposites prepared via in situ intercalative polymerization

2019 ◽  
Vol 26 (1) ◽  
pp. 97-108
Author(s):  
Heyun Wang ◽  
Yingchun Li ◽  
Zhong Wei ◽  
Yanmei Song ◽  
Qiang Liu ◽  
...  
2011 ◽  
Vol 233-235 ◽  
pp. 1830-1833 ◽  
Author(s):  
Yong Chen ◽  
Hui Xu ◽  
Tao Sun

The PMMA/TiO2 nanocomposites were prepared by in situ polymerization,the dissolution, thermal stability and the mechanical property of the nanocomposites were studied. The results indicated that nano-TiO2 may be crosslinking points in the matrix and the thermal stability of the nanocomposites became higher. As the content of nano-TiO2 increased, the mechanical properties of the nanocomposites had great changes.


1993 ◽  
Vol 16 (5) ◽  
pp. 260-264 ◽  
Author(s):  
H.Y. Tong ◽  
B.Z. Ding ◽  
H.G. Jiang ◽  
Z.Q. Hu ◽  
L. Dong ◽  
...  

RSC Advances ◽  
2020 ◽  
Vol 10 (23) ◽  
pp. 13517-13524
Author(s):  
Chunbo Wang ◽  
Bing Cong ◽  
Junyu Zhao ◽  
Xiaogang Zhao ◽  
Daming Wang ◽  
...  

In situ synthesis of MWCNT-graft-polyimides enhanced thermal conductivity at a relatively low loading.


2011 ◽  
Vol 1312 ◽  
Author(s):  
Ananta Raj Adhikari ◽  
Mircea Chipara ◽  
Karen Lozano

ABSTRACTThe effect of processing (shear) time on the mechanical behavior and thermal stability of multiwalled nanotube reinforced polyethylene was investigated. It was observed that the mechanical property (storage modulus, loss modulus) of the composites is process dependant whereas the thermal stability does not. The increase in mechanical behavior is attributed to a stronger interface between the nanotube and the polymer matrix.


2007 ◽  
Vol 50 (3) ◽  
pp. 677 ◽  
Author(s):  
Jae-Wook Jae-Wook ◽  
Kyung-Hwan Kyung-Hwan ◽  
Hyoungsub Hyoungsub ◽  
Cheol-Woong Cheol-Woong ◽  
Dongwon Dongwon ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 210
Author(s):  
Xiangdong Yang ◽  
Haitao Wang ◽  
Peng Wang ◽  
Xuxin Yang ◽  
Hongying Mao

Using in situ ultraviolet photoelectron spectroscopy (UPS) and X-ray photoelectron spectroscopy (XPS) measurements, the thermal behavior of octadecyltrichlorosilane (OTS) and 1H, 1H, 2H, and 2H-perfluorooctyltriethoxysilane (PTES) monolayers on SiO2 substrates has been investigated. OTS is thermally stable up to 573 K with vacuum annealing, whereas PTES starts decomposing at a moderate temperature between 373 K and 423 K. Vacuum annealing results in the decomposition of CF3 and CF2 species rather than desorption of the entire PTES molecule. In addition, our UPS results reveal that the work function (WF)of OTS remains the same after annealing; however WF of PTES decreases from ~5.62 eV to ~5.16 eV after annealing at 573 K.


Sign in / Sign up

Export Citation Format

Share Document