scholarly journals A probabilistic long‐term framework for site‐specific erosion analysis of wind turbine blades: A case study of 31 Dutch sites

Wind Energy ◽  
2021 ◽  
Author(s):  
Amrit Shankar Verma ◽  
Zhiyu Jiang ◽  
Zhengru Ren ◽  
Marco Caboni ◽  
Hans Verhoef ◽  
...  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. Pugh ◽  
M. M. Stack

AbstractErosion rates of wind turbine blades are not constant, and they depend on many external factors including meteorological differences relating to global weather patterns. In order to track the degradation of the turbine blades, it is important to analyse the distribution and change in weather conditions across the country. This case study addresses rainfall in Western Europe using the UK and Ireland data to create a relationship between the erosion rate of wind turbine blades and rainfall for both countries. In order to match the appropriate erosion data to the meteorological data, 2 months of the annual rainfall were chosen, and the differences were analysed. The month of highest rain, January and month of least rain, May were selected for the study. The two variables were then combined with other data including hailstorm events and locations of wind turbine farms to create a general overview of erosion with relation to wind turbine blades.


2021 ◽  
pp. 0309524X2110605
Author(s):  
Caleb Traylor ◽  
Murat Inalpolat

This paper details the development of a generalized computational approach that enables prediction of cavity-internal sound pressure distribution due to flow-generated noise at high frequencies. The outcomes of this research is of particular interest for development of an acoustics-based structural health monitoring system for wind turbine blades. The methodology builds from existing reduced-order aeroacoustic modeling techniques and ray tracing based geometrical acoustics and is demonstrated on the model NREL 5 MW wind turbine blade as a case study. The computational predictions demonstrated that damage could be successfully detected in the first half of the blade cavity near the root and that the change in frequency content may be indicative of the type of damage that has occurred. This study provides a foundation to analyze specific blades and likely damage cases for determining key factors of system design such as number and placement of sensors as well as for hardware selection.


AIAA Journal ◽  
2020 ◽  
Vol 58 (11) ◽  
pp. 4781-4793 ◽  
Author(s):  
Alexandros Antoniou ◽  
Malo Rosemeier ◽  
Kutlualp Tazefidan ◽  
Alexander Krimmer ◽  
Gerrit Wolken-Möhlmann

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 581
Author(s):  
Sagi Sagimbayev ◽  
Yestay Kylyshbek ◽  
Sagidolla Batay ◽  
Yong Zhao ◽  
Sai Fok ◽  
...  

This paper presents two novel automated optimization approaches. The first one proposes a framework to optimize wind turbine blades by integrating multidisciplinary 3D parametric modeling, a physics-based optimization scheme, the Inverse Blade Element Momentum (IBEM) method, and 3D Reynolds-averaged Navier–Stokes (RANS) simulation; the second method introduces a framework combining 3D parametric modeling and an integrated goal-driven optimization together with a 4D Unsteady Reynolds-averaged Navier–Stokes (URANS) solver. In the first approach, the optimization toolbox operates concurrently with the other software packages through scripts. The automated optimization process modifies the parametric model of the blade by decreasing the twist angle and increasing the local angle of attack (AoA) across the blade at locations with lower than maximum 3D lift/drag ratio until a maximum mean lift/drag ratio for the whole blade is found. This process exploits the 3D stall delay, which is often ignored in the regular 2D BEM approach. The second approach focuses on the shape optimization of individual cross-sections where the shape near the trailing edge is adjusted to achieve high power output, using a goal-driven optimization toolbox verified by 4D URANS Computational Fluid Dynamics (CFD) simulation for the whole rotor. The results obtained from the case study indicate that (1) the 4D URANS whole rotor simulation in the second approach generates more accurate results than the 3D RANS single blade simulation with periodic boundary conditions; (2) the second approach of the framework can automatically produce the blade geometry that satisfies the optimization objective, while the first approach is less desirable as the 3D stall delay is not prominent enough to be fruitfully exploited for this particular case study.


2020 ◽  
Author(s):  
Alexandros Antoniou ◽  
Malo Rosemeier ◽  
Kutlualp Tazefidan ◽  
Alexander Krimmer ◽  
Gerrit Wolken-Möhlmann

Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1629
Author(s):  
Amrit Shankar Verma ◽  
Sandro Di Noi ◽  
Zhengru Ren ◽  
Zhiyu Jiang ◽  
Julie J. E. Teuwen

Leading edge erosion (LEE) repairs of wind turbine blades (WTBs) involve infield application of leading edge protection (LEP) solutions. The industry is currently aiming to use factory based LEP coatings that can applied to the WTBs before they are shipped out for installation. However, one of the main challenges related to these solutions is the choice of a minimum LEP application length to be applied in the spanwise direction of the WTBs. Generally, coating suppliers apply 10–20 m of LEP onto the blades starting from the tip of the blade using the “rule of thumb”, and no studies in the literature exist that stipulate how these LEP lengths can be calculated. In this study, we extend the scope of a recently developed long-term probabilistic framework to determine the minimum LEP application length required for WTBs to combat rain-induced erosion. A parametric study is performed where different wind turbines with varying power ratings of 2.1 MW to 15 MW at different Dutch sites ranging from inland to coastal are considered. The results of the study show that the LEP application length is sensitive to the choice of the site, as well as the turbine attributes. Further, LEP lengths for WTBs are found to be the highest for turbines installed at coastal sites and turbines with higher power ratings. A detailed investigation is further performed to check the sensitivity of the LEP application length with the wind turbine parameters. The results of the study are expected to provide guidelines to the industry for efficient repair strategies for WTBs.


Sign in / Sign up

Export Citation Format

Share Document