Investigation of the influence of particle size on the quantitative analysis of glasses by energy-dispersive micro x-ray fluorescence spectrometry

2002 ◽  
Vol 31 (1) ◽  
pp. 16-26 ◽  
Author(s):  
T. C. Roedel ◽  
H. Bronk ◽  
M. Haschke
2003 ◽  
Vol 58 (4) ◽  
pp. 627-633 ◽  
Author(s):  
C. Jokubonis ◽  
P. Wobrauschek ◽  
S. Zamini ◽  
M. Karwowski ◽  
G. Trnka ◽  
...  

Author(s):  
Y. Sato ◽  
T. Hashimoto ◽  
M. Ichihashi ◽  
Y. Ueki ◽  
K. Hirose ◽  
...  

Analytical TEMs have two variations in x-ray detector geometry, high and low angle take off. The high take off angle is advantageous for accuracy of quantitative analysis, because the x rays are less absorbed when they go through the sample. The low take off angle geometry enables better sensitivity because of larger detector solid angle.Hitachi HF-2000 cold field emission TEM has two versions; high angle take off and low angle take off. The former allows an energy dispersive x-ray detector above the objective lens. The latter allows the detector beside the objective lens. The x-ray take off angle is 68° for the high take off angle with the specimen held at right angles to the beam, and 22° for the low angle take off. The solid angle is 0.037 sr for the high angle take off, and 0.12 sr for the low angle take off, using a 30 mm2 detector.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 426
Author(s):  
Behrooz Abbasi ◽  
Xiaoliang Wang ◽  
Judith C. Chow ◽  
John G. Watson ◽  
Bijan Peik ◽  
...  

Respirable coal mine dust (RCMD) exposure is associated with black lung and silicosis diseases in underground miners. Although only RCMD mass and silica concentrations are regulated, it is possible that particle size, surface area, and other chemical constituents also contribute to its adverse health effects. This review summarizes measurement technologies for RCMD mass concentrations, morphology, size distributions, and chemical compositions, with examples from published efforts where these methods have been applied. Some state-of-the-art technologies presented in this paper have not been certified as intrinsically safe, and caution should be exerted for their use in explosive environments. RCMD mass concentrations are most often obtained by filter sampling followed by gravimetric analysis, but recent requirements for real-time monitoring by continuous personal dust monitors (CPDM) enable quicker exposure risk assessments. Emerging low-cost photometers provide an opportunity for a wider deployment of real-time exposure assessment. Particle size distributions can be determined by microscopy, cascade impactors, aerodynamic spectrometers, optical particle counters, and electrical mobility analyzers, each with unique advantages and limitations. Different filter media are required to collect integrated samples over working shifts for comprehensive chemical analysis. Teflon membrane filters are used for mass by gravimetry, elements by energy dispersive X-ray fluorescence, rare-earth elements by inductively coupled plasma-mass spectrometry and mineralogy by X-ray diffraction. Quartz fiber filters are analyzed for organic, elemental, and brown carbon by thermal/optical methods and non-polar organics by thermal desorption-gas chromatography-mass spectrometry. Polycarbonate-membrane filters are analyzed for morphology and elements by scanning electron microscopy (SEM) with energy dispersive X-ray, and quartz content by Fourier-transform infrared spectroscopy and Raman spectroscopy.


2014 ◽  
Vol 43 (2) ◽  
pp. 47-53 ◽  
Author(s):  
Toshio MIYAZAKI ◽  
Shin-ichi YAMASAKI ◽  
Noriyoshi TSUCHIYA ◽  
Satoshi OKUMURA ◽  
Ryoichi YAMADA ◽  
...  

2021 ◽  
Author(s):  
Maame Croffie ◽  
Paul N. Williams ◽  
Owen Fenton ◽  
Anna Fenelon ◽  
Karen Daly

<p>Soil texture is an essential factor for effective land management in agricultural production. Knowledge of soil texture and particle size at field scale can aid with on-going soil management decisions. Standard soil physical and gravimetric methods for particle size analysis are time-consuming and X-ray fluorescence spectrometry (XRF) provides a rapid and cost-effective alternative. The objective of this study was to explore the use of XRF as a predictor for particle size. An extensive archive of Irish soils with particle size and soil texture data was used to select samples for XRF analysis. Regression and correlation analyses on XRF determined results showed that the relationship between Rb and % clay varied with soil type and was dependent on the parent material. There was a strong relationship (R > 0.62, R<sup>2</sup>>0.30, p<0.05) between Rb and clay for soils originating from bedrock such as limestones and slate. Contrastingly, no significant relationship (R<0.03, R<sup>2</sup>=0.00, p>0.05) exists between Rb and % clay for soils originating from granite and gneiss. Furthermore, there was a significant negative correlation (p<0.05) between Rb and % sand. The XRF is a useful technique for rough screening of particle size distribution in soils originating from certain parent materials. Thus, this may contribute to the rapid prediction of soil texture based on knowledge of the particle size distribution.</p><p> </p>


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Tong Chen ◽  
Xingpu Qi ◽  
Zaiyong Si ◽  
Qianwei Cheng ◽  
Hui Chen

Abstract In this work, a method was established for discriminating geographical origins of wheat flour based on energy dispersive X-ray fluorescence spectrometry (ED-XRF) and chemometrics. 68 wheat flour samples from three different origins were collected and analyzed using ED-XRF technology. Firstly, the principal component analysis method was applied to analyze the feasibility of discrimination and reduce data dimensionality. Then, Competitive Adaptive Reweighted Sampling (CARS) was used to further extract feature variables, and 12 energy variables (corresponding to mineral elements) were identified and selected to characterize the geographical attributes of wheat flour samples. Finally, a non-linear model was constructed using principal component analysis and quadratic discriminant analysis (QDA). The CARS-PCA-QDA model showed that the accuracy of five-fold cross-validation was 84.25%. The results showed that the established method was able to select important energy channel variables effectively and wheat flour could be classified based on geographical origins with chemometrics, which could provide a theoretical basis for unveiling the relationship between mineral element composition and wheat origin.


1977 ◽  
Vol 49 (12) ◽  
pp. 1734-1737 ◽  
Author(s):  
John A. Boslett ◽  
Robert L. R. Towns ◽  
Robert G. Megargle ◽  
Karl H. Pearson ◽  
Thomas C. Furnas

Sign in / Sign up

Export Citation Format

Share Document