Elasto-plastic Analysis of Fracture Specimens using the Boundary Element Method

Author(s):  
Iztok Potrc ◽  
Rudolf Sadl
2010 ◽  
Vol 449 ◽  
pp. 37-45
Author(s):  
E. Pineda ◽  
M.H. Aliabadi ◽  
Janis Zapata

This paper presents a new formulation of the Dual Boundary Element Method to visco-plastic problems in a two-dimensional analysis. Visco-plastic stresses and strains around the crack tip are obtained until the visco-plastic strain rate reaches the steady state condition. A perfect visco-plastic analysis is also carried out in linear strain hardening (H’=0) materials. Part of the domain, the part that is susceptible to yield is discretized into quadratic, quadrilateral continuous cells. The loads are used to demonstrate time effects in the analysis carried out. Numerical results are compared with solution obtained from the Finite Element Method (FEM).


1995 ◽  
Vol 5 (6) ◽  
pp. 621-638 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister ◽  
C. A. Spangler

1993 ◽  
Vol 21 (2) ◽  
pp. 66-90 ◽  
Author(s):  
Y. Nakajima ◽  
Y. Inoue ◽  
H. Ogawa

Abstract Road traffic noise needs to be reduced, because traffic volume is increasing every year. The noise generated from a tire is becoming one of the dominant sources in the total traffic noise because the engine noise is constantly being reduced by the vehicle manufacturers. Although the acoustic intensity measurement technology has been enhanced by the recent developments in digital measurement techniques, repetitive measurements are necessary to find effective ways for noise control. Hence, a simulation method to predict generated noise is required to replace the time-consuming experiments. The boundary element method (BEM) is applied to predict the acoustic radiation caused by the vibration of a tire sidewall and a tire noise prediction system is developed. The BEM requires the geometry and the modal characteristics of a tire which are provided by an experiment or the finite element method (FEM). Since the finite element procedure is applied to the prediction of modal characteristics in a tire noise prediction system, the acoustic pressure can be predicted without any measurements. Furthermore, the acoustic contribution analysis obtained from the post-processing of the predicted results is very helpful to know where and how the design change affects the acoustic radiation. The predictability of this system is verified by measurements and the acoustic contribution analysis is applied to tire noise control.


Sign in / Sign up

Export Citation Format

Share Document