One-Step Conversion of Amino Acids into N-Menthyloxycarbonyl Alkyl Ester Derivatives for Chiral Gas Chromatography

1993 ◽  
Vol 214 (2) ◽  
pp. 420-425 ◽  
Author(s):  
N. Domergue ◽  
M. Pugniere ◽  
A. Previero
1973 ◽  
Vol 26 (4) ◽  
pp. 831 ◽  
Author(s):  
KM Williams ◽  
B Halpern

The common urinary and serum amino acids have been separated and identified by gas chromatography and mass spectrometry of their neopentylidene alkyl ester derivatives.


1982 ◽  
Vol 14 (4-5) ◽  
pp. 59-71 ◽  
Author(s):  
L H Keith ◽  
R C Hall ◽  
R C Hanisch ◽  
R G Landolt ◽  
J E Henderson

Two new methods have been developed to analyze for organic pollutants in water. The first, two-dimensional gas chromatography, using post detector peak recycling (PDPR), involves the use of a computer-controlled gas Chromatograph to selectively trap compounds of interest and rechromatograph them on a second column, recycling them through the same detector again. The second employs a new detector system, a thermally modulated electron capture detector (TMECD). Both methods were used to demonstrate their utility by applying them to the analysis of a new class of potentially ubiquitous anthropoaqueous pollutants in drinking waters- -haloacetonitriles. These newly identified compounds are produced from certain amino acids and other nitrogen-containing compounds reacting with chlorine during the disinfection stage of treatment.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1649-1663
Author(s):  
Oliver Z Nanassy ◽  
Kelly T Hughes

Abstract The Hin recombinase catalyzes a site-specific recombination reaction that results in the reversible inversion of a 1-kbp segment of the Salmonella chromosome. The DNA inversion reaction catalyzed by the Salmonella Hin recombinase is a dynamic process proceeding through many intermediate stages, requiring multiple DNA sites and the Fis accessory protein. Biochemical analysis of this reaction has identified intermediate steps in the inversion reaction but has not yet revealed the process by which transition from one step to another occurs. Because transition from one reaction step to another proceeds through interactions between specific amino acids, and between amino acids and DNA bases, it is possible to study these transitions through mutational analysis of the proteins involved. We isolated a large number of mutants in the Hin recombinase that failed to carry out the DNA exchange reaction. We generated genetic tools that allowed the assignment of these mutants to specific transition steps in the recombination reaction. This genetic analysis, combined with further biochemical analysis, allowed us to define contributions by specific amino acids to individual steps in the DNA inversion reaction. Evidence is also presented in support of a model that Fis protein enhances the binding of Hin to the hixR recombination site. These studies identified regions within the Hin recombinase involved in specific transition steps of the reaction and provided new insights into the molecular details of the reaction mechanism.


Author(s):  
Shan Wang ◽  
Hai Deng

Abstract The introduction of β-hydroxy-α-amino acids (βHAAs) into organic molecules has received considerable attention as these molecules have often found widespread applications in bioorganic chemistry, medicinal chemistry and biomaterial science. Despite innovation of asymmetric synthesis of βHAAs, stereoselective synthesis to control the two chiral centres at Cα and Cβ positions is still challenging, with poor atomic economy and multi protection and deprotection steps. These syntheses are often operated under harsh conditions. Therefore, a biotransformation approach using biocatalysts is needed to selectively introduce these two chiral centres into structurally diverse molecules. Yet, there are few ways that enable one-step synthesis of βHAAs. One is to extend the substrate scope of the existing enzyme inventory. Threonine aldolases have been explored to produce βHAAs. However, the enzymes have poor controlled installation at Cβ position, often resulting in a mixture of diastereoisomers which are difficult to be separated. In this respect, l-threonine transaldolases (LTTAs) offer an excellent potential as the enzymes often provide controlled stereochemistry at Cα and Cβ positions. Another is to mine LTTA homologues and engineer the enzymes using directed evolution with the aim of finding engineered biocatalysts to accept broad substrates with enhanced conversion and stereoselectivity. Here, we review the development of LTTAs that incorporate various aldehyde acceptors to generate structurally diverse βHAAs and highlight areas for future developments. Key points • The general mechanism of the transaldolation reaction catalysed by LTTAs • Recent advances in LTTAs from different biosynthetic pathways • Applications of LTTAs as biocatalysts for production of βHAAs


Author(s):  
William J. McBride ◽  
Jack D. Klingman

Sign in / Sign up

Export Citation Format

Share Document