scholarly journals Stability Results for the First Eigenvalue of the Laplacian on Domains in Space Forms

2002 ◽  
Vol 267 (2) ◽  
pp. 760-774 ◽  
Author(s):  
Andrés I Ávila
2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Akram Ali ◽  
Fatemah Mofarreh ◽  
Wan Ainun Mior Othman ◽  
Dhriti Sundar Patra

AbstractIn the present, we first obtain Chen–Ricci inequality for C-totally real warped product submanifolds in cosymplectic space forms. Then, we focus on characterizing spheres and Euclidean spaces, by using the Bochner formula and a second-order ordinary differential equation with geometric inequalities. We derive the characterization for the base of the warped product via the first eigenvalue of the warping function. Also, it proves that there is an isometry between the base $\mathbb{N}_{1}$ N 1 and the Euclidean sphere $\mathbb{S}^{m_{1}}$ S m 1 under some different extrinsic conditions.


Author(s):  
Masayuki Aino

AbstractWe show a Lichnerowicz-Obata type estimate for the first eigenvalue of the Laplacian of n-dimensional closed Riemannian manifolds with an almost parallel p-form ($$2\le p \le n/2$$ 2 ≤ p ≤ n / 2 ) in $$L^2$$ L 2 -sense, and give a Gromov-Hausdorff approximation to a product $$S^{n-p}\times X$$ S n - p × X under some pinching conditions when $$2\le p<n/2$$ 2 ≤ p < n / 2 .


Author(s):  
Kairen Cai

We give some estimates of the first eigenvalue of the Laplacian for compact and non-compact submanifold immersed in the Euclidean space by using the square length of the second fundamental form of the submanifold merely. Then some spherical theorems and a nonimmersibility theorem of Chern and Kuiper type can be obtained.


2016 ◽  
Vol 6 (4) ◽  
pp. 365-391 ◽  
Author(s):  
Leandro M. Del Pezzo ◽  
Julio D. Rossi

2003 ◽  
Vol 3 (2) ◽  
Author(s):  
Bruno Colbois ◽  
Ana-Maria Matei

AbstractWe consider a 1-parameter family of hyperbolic surfaces M(t) of genus ν which degenerate as t → 0 and we obtain a precise estimate of λAs a direct application, we obtain that the quotientTo prove our results we use in an essential way the geometry of hyperbolic surfaces which is very well known. We show that an eigenfunction for λ


Sign in / Sign up

Export Citation Format

Share Document