A Mixed Mode Fatigue Crack Growth Model Including the Residual Stress Effect Due to Weld

Author(s):  
S. Ma ◽  
X. B. Zhang ◽  
N. Recho ◽  
J. Li
2020 ◽  
Vol 131 ◽  
pp. 105324 ◽  
Author(s):  
S.C. Wu ◽  
C.H. Li ◽  
Y. Luo ◽  
H.O. Zhang ◽  
G.Z. Kang

2019 ◽  
Vol 1 (4) ◽  
Author(s):  
Zhaojun Du ◽  
Keke Tang ◽  
Zhaoqing Wang ◽  
Zheng Zhong

2012 ◽  
Vol 224 ◽  
pp. 303-306
Author(s):  
Chen Chen Ma ◽  
Xiao Gui Wang

The fatigue initiation and non-self-similar fatigue crack growth behavior of three notched compact tension and shear specimens of 16MnR steel under mixed mode I/II loading were investigated. The plane-stress finite element model with the implemented Armstrong-Frederick type cyclic plasticity model was used to calculate the elastic-plastic stress-strain responses. A recently developed dynamic crack growth model was used to simulate the effects of loading history on the successive crack growth. With the outputted numerical results, a multiaxial fatigue damage criterion based on the critical plane was used to determine the location of fatigue initiation. A formula of fatigue crack growth rate, which is based on the postulation that the fatigue initiation and crack growth have the same damage mechanism, was then used to calculate the transient crack growth rate and determine the non-self-similar crack growth path. The predicted fatigue initiation position, crack path and crack growth rate are in excellent agreement with the experimental data.


1997 ◽  
Vol 31 (18) ◽  
pp. 1838-1855 ◽  
Author(s):  
D. R. Atodaria ◽  
S. K. Putatunda ◽  
P. K. Mallick

1979 ◽  
Vol 101 (1) ◽  
pp. 53-58 ◽  
Author(s):  
P. K. Nair

A fatigue crack growth model is developed to evaluate the behavior of planar elliptic flaws in structural components under cyclic loadings. The model is applied to plates with cyclic tensile load and nuclear piping under cyclic pressure loading. It is found that small flaws in plates tend to grow to a fixed aspect ratio, b/a≃0.9 (b is the through thickness direction). The trend checks well with available experimental data. For an axial part-through flaw in piping there is no fixed aspect ratio for growth. However, the flaws in piping are found to grow to a definite axial length. An evaluation is made of the applicability of the model to nuclear primary piping.


Sign in / Sign up

Export Citation Format

Share Document