A Negotiation Model to Support Material Selection in Concurrent Design

Author(s):  
Robin Barker ◽  
Leigh Holloway ◽  
Anthony Meehan
2016 ◽  
Vol 4 (39) ◽  
pp. 15181-15188 ◽  
Author(s):  
Xin Xia ◽  
Jane L. R. Yates ◽  
Glenn Jones ◽  
Misbah Sarwar ◽  
Ian Harkness ◽  
...  

(Left) The atomic model of oxygen adsorption on the MX supported Pt overlayer film. (Right) Support material selection through the Pt wetting ability parameter δ and oxygen binding energy, ΔE*[O]. The dashed line corresponds to the wetting parameter δ0 of the unsupported Pt(111) surface. The red line denotes the apex of ORR activity.


2008 ◽  
Vol 4 (1) ◽  
pp. 1-26
Author(s):  
Gábor Kalácska

Research was performed on the friction, wear and efficiency of plastic gears made of modern engineering polymers and their composites both in a clean environment (adhesive sliding surfaces) and in an environment contaminated with solid particles and dust (abrasive), with no lubrication at all. The purpose is to give a general view about the results of abrasive wear tests including seven soil types as abrasive media. At the first stage of the research silicious sand was applied between the meshing gears and the wear of plastic and steel gears was evaluated and analyzed from the point of different material properties (elongation at break, hardness, yield stress, modulus of elasticity) and its combinations. The different correlations between the experienced wear and material features are also introduced. At the second stage of the project the abrasive sand was replaced with different physical soil types. The abrasive wear of gears is plotted in the function of soil types. The results highlight on the considerable role of physical soil types on abrasive wear resistance and the conclusions contain the detailed wear resistance. The results offer a new tribology database for the operation and maintenance of agricultural machines with the opportunity of a better material selection according to the dominant soil type. This can finally result longer lifetime and higher reliability of wearing plastic/steel parts.


2019 ◽  
Author(s):  
Moritz Wolf ◽  
Nico Fischer ◽  
Michael Claeys

<p>The inert nature of graphitic samples allows for characterisation of rather isolated supported nanoparticles in model catalysts, as long as sufficiently large inter-particle distances are obtained. However, the low surface area of graphite and the little interaction with nanoparticles result in a challenging application of conventional preparation routes in practice. In the present study, a set of graphitic carbon materials was characterised in order to identify potential support materials for the preparation of model catalyst systems. Various sizes of well-defined Co<sub>3</sub>O<sub>4</sub> nanoparticles were synthesised separately and supported onto exfoliated graphite powder, that is graphite after solvent-assisted exfoliation <i>via</i> ultrasonication resulting in thinner flakes with increased specific surface area. The developed model catalysts are ideally suited for sintering studies of isolated nano-sized cobaltous particles as the graphitic support material does not provide distinct metal-support interaction. Furthermore, the differently sized cobaltous particles in the various model systems render possible studies on structural dependencies of activity, selectivity, and deactivation in cobalt oxide or cobalt catalysed reactions.</p>


Author(s):  
Nabil Mohareb ◽  
Sara Maassarani

Current architecture studios are missing an important phase in the education process, which is constructing the students’ conceptual ideas on a real physical scale. The design-build approach enables the students to test their ideas, theories, material selection, construction methods, environmental constraints, simulation results, level of space functionality and other important aspects when used by real target clients in an existing context. This paper aims to highlight the importance of using the design-build method through discussing a design project case study carried out by the Masters of Architecture design programme students at Beirut Arab University, who have built prototype units for refugees on a 1:1 scale.


Sign in / Sign up

Export Citation Format

Share Document