Tight and Loose Semantics for Transformation Systems

Author(s):  
Fernando Orejas ◽  
Hartmut Ehrig ◽  
Elvira Pino
2021 ◽  
Vol 7 (7) ◽  
pp. 520
Author(s):  
Jianmin Fu ◽  
Nohelli E. Brockman ◽  
Brian L. Wickes

The transformation of Cryptococcus spp. by Agrobacterium tumefaciens has proven to be a useful genetic tool. A number of factors affect transformation frequency. These factors include acetosyringone concentration, bacterial cell to yeast cell ratio, cell wall damage, and agar concentration. Agar concentration was found to have a significant effect on the transformant number as transformants increased with agar concentration across all four serotypes. When infection time points were tested, higher agar concentrations were found to result in an earlier transfer of the Ti-plasmid to the yeast cell, with the earliest transformant appearing two h after A. tumefaciens contact with yeast cells. These results demonstrate that A. tumefaciens transformation efficiency can be affected by a variety of factors and continued investigation of these factors can lead to improvements in specific A. tumefaciens/fungus transformation systems.


Genome ◽  
2002 ◽  
Vol 45 (2) ◽  
pp. 421-430 ◽  
Author(s):  
A Pellegrineschi ◽  
L M Noguera ◽  
B Skovmand ◽  
R M Brito ◽  
L Velazquez ◽  
...  

The efficiency of wheat biolistic transformation systems strongly depends on the bombardment parameters, the condition of the donor plant, and the plant genotype chosen for the transformation process. This paper analyzes the transformation efficiency of the 129 wheat sister lines generically called 'Bobwhite', originally obtained from the cross 'Aurora'//'Kalyan'/'Bluebird 3'/'Woodpecker'. A number of factors influencing the transformation were examined, such as the ability to produce embryogenic callus, regeneration in selection medium, and overall transformation performance. Of the 129 genotypes evaluated, eight demonstrated transformation efficiencies above 60% (60 independent transgenic events per 100 immature embryos bombarded). Among the eight genotypes identified, we studied agronomic characteristics such as earliness to identify the most adaptable line(s) for different lab conditions. 'Bobwhite' SH 98 26 was identified as a super-transformable wheat line.Key words: wheat transformation, 'Bobwhite', genotype effect.


Author(s):  
VAHID RAFE ◽  
ADEL T. RAHMANI

Graph Grammars have recently become more and more popular as a general formal modeling language. Behavioral modeling of dynamic systems and model to model transformations are a few well-known examples in which graphs have proven their usefulness in software engineering. A special type of graph transformation systems is layered graphs. Layered graphs are a suitable formalism for modeling hierarchical systems. However, most of the research so far concentrated on graph transformation systems as a modeling means, without considering the need for suitable analysis tools. In this paper we concentrate on how to analyze these models. We will describe our approach to show how one can verify the designed graph transformation systems. To verify graph transformation systems we use a novel approach: using Bogor model checker to verify graph transformation systems. The AGG-like graph transformation systems are translated to BIR — the input language of Bogor — and Bogor verifies that model against some properties defined by combining LTL and special purpose graph rules. Supporting schema-based and layered graphs characterize our approach among existing solutions for verification of graph transformation systems.


Sign in / Sign up

Export Citation Format

Share Document