A complete axiom system for isomorphism of types in closed categories

Author(s):  
S. Soloviev
Keyword(s):  
2019 ◽  
Vol 34 (2) ◽  
pp. 297-315
Author(s):  
Linxiao Wei ◽  
Yijun Hu

AbstractCapital allocation is of central importance in portfolio management and risk-based performance measurement. Capital allocations for univariate risk measures have been extensively studied in the finance literature. In contrast to this situation, few papers dealt with capital allocations for multivariate risk measures. In this paper, we propose an axiom system for capital allocation with multivariate risk measures. We first recall the class of the positively homogeneous and subadditive multivariate risk measures, and provide the corresponding representation results. Then it is shown that for a given positively homogeneous and subadditive multivariate risk measure, there exists a capital allocation principle. Furthermore, the uniqueness of the capital allocation principe is characterized. Finally, examples are also given to derive the explicit capital allocation principles for the multivariate risk measures based on mean and standard deviation, including the multivariate mean-standard-deviation risk measures.


2004 ◽  
Vol 69 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
Bjørn Kjos-Hanssen ◽  
Steffen Lempp ◽  
Theodore A. Slaman

Abstract.In Reverse Mathematics, the axiom system DNR. asserting the existence of diagonally non-recursive functions, is strictly weaker than WWKL0 (weak weak König's Lemma).


2009 ◽  
Vol 40 (2) ◽  
pp. 78-86
Author(s):  
Greg Oman

2019 ◽  
Vol 13 (4) ◽  
pp. 720-747
Author(s):  
SERGEY DROBYSHEVICH ◽  
HEINRICH WANSING

AbstractWe present novel proof systems for various FDE-based modal logics. Among the systems considered are a number of Belnapian modal logics introduced in Odintsov & Wansing (2010) and Odintsov & Wansing (2017), as well as the modal logic KN4 with strong implication introduced in Goble (2006). In particular, we provide a Hilbert-style axiom system for the logic $BK^{\square - } $ and characterize the logic BK as an axiomatic extension of the system $BK^{FS} $. For KN4 we provide both an FDE-style axiom system and a decidable sequent calculus for which a contraction elimination and a cut elimination result are shown.


1965 ◽  
Vol 25 ◽  
pp. 59-86 ◽  
Author(s):  
Katuzi Ono

A common feature of formal theories is that each theory has its own system of axioms described in terms of some symbols for its primitive notions together with logical symbols. Each of these theories is developed by deduction from its axiom system in a certain logical system which is usually the classical logic of the first order.


Sign in / Sign up

Export Citation Format

Share Document