Canonical Bases in Affine Type A and Ariki’s Theorem

Author(s):  
Meinolf Geck ◽  
Nicolas Jacon
Keyword(s):  
Type A ◽  
10.37236/8559 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Nicolas Jacon

We study the class of Uglov bipartitions and prove a generalization of a conjecture by Dipper, James and Murphy. We give two consequences concerning the computation of canonical bases in affine type $A$ and the description of decomposition matrices for Hecke algebras of type $B_n$ in arbitrary characteristic.


2021 ◽  
Vol 27 (4) ◽  
Author(s):  
Volker Genz ◽  
Gleb Koshevoy ◽  
Bea Schumann
Keyword(s):  
Type A ◽  

2017 ◽  
Vol 23 (4) ◽  
pp. 2553-2633 ◽  
Author(s):  
Hiraku Nakajima ◽  
Yuuya Takayama
Keyword(s):  
Type A ◽  

2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Nicolas Jacon

We use the crystal isomorphisms of the Fock space to describe two maps on partitions and multipartitions which naturally appear in the crystal basis theory for quantum groups in affine type $A$ and in the representation theory of Hecke algebras of type $G(l,l,n)$. 


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Michael Chmutov ◽  
Pavlo Pylyavskyy ◽  
Elena Yudovina

International audience In his study of Kazhdan-Lusztig cells in affine type A, Shi has introduced an affine analog of Robinson- Schensted correspondence. We generalize the Matrix-Ball Construction of Viennot and Fulton to give a more combi- natorial realization of Shi's algorithm. As a biproduct, we also give a way to realize the affine correspondence via the usual Robinson-Schensted bumping algorithm. Next, inspired by Honeywill, we extend the algorithm to a bijection between extended affine symmetric group and triples (P, Q, ρ) where P and Q are tabloids and ρ is a dominant weight. The weights ρ get a natural interpretation in terms of the Affine Matrix-Ball Construction. Finally, we prove that fibers of the inverse map possess a Weyl group symmetry, explaining the dominance condition on weights.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Gabriel Frieden

International audience We construct a type A(1) n−1 affine geometric crystal structure on the Grassmannian Gr(k, n). The tropicalization of this structure recovers the combinatorics of crystal operators on semistandard Young tableaux of rectangular shape (with n − k rows), including the affine crystal operator e 0. In particular, the promotion operation on these tableaux essentially corresponds to cyclically shifting the Plu ̈cker coordinates of the Grassmannian.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Avinash J. Dalal ◽  
Jennifer Morse

International audience We give a new description of the Pieri rule for $k$-Schur functions using the Bruhat order on the affine type-$A$ Weyl group. In doing so, we prove a new combinatorial formula for representatives of the Schubert classes for the cohomology of affine Grassmannians. We show how new combinatorics involved in our formulas gives the Kostka-Foulkes polynomials and discuss how this can be applied to study the transition matrices between Hall-Littlewood and $k$-Schur functions. Nous présentons une nouvelle description, issue de l'ordre de Bruhat du groupe de Weyl affine de type $A$, de la règle de Pieri pour les fonctions $k$-Schur. Ce faisant, nous obtenons une nouvelle formule combinatoire pour les représentants des classes de Schubert de la cohomologie des Grassmannienne affines. Nous décrivons aussi comment notre approche permet d'obtenir les polynômes de Kostka-Foulkes et comment elle peut être appliquée à l’étude des matrices de transition entre les polynômes de Hall-Littlewood et les fonctions $k$-Schur.


Sign in / Sign up

Export Citation Format

Share Document