Climatic Constraints to Crop Production in the Red Soils Area of Southern China

2004 ◽  
pp. 111-127
Author(s):  
David J. Mitchell
2016 ◽  
Author(s):  
Abdulaha-Al Baquy ◽  
Jiu-Yu Li ◽  
Chen-Yang Xu ◽  
Khalid Mehmood ◽  
Ren-Kou Xu

Abstract. Soil acidity has become a serious constraint in dry land crop production systems of acidic Ultisols in tropical and subtropical regions of southern China, where winter wheat and canola are cultivated as important rotational crops. Regardless of other common existing concerns in acidic Ultisols of southern China, it needs to be investigated whether soil acidity has any effect on wheat and canola growth. There is little information on the determination of critical soil pH as well as aluminium (Al) concentration for wheat and canola crops. The objective of this study was to determine the critical soil pH and exchangeable aluminium concentration (AlKCl) for wheat and canola production. Two pot cultures with two Ultisols from Hunan and Anhui were conducted for wheat and canola crops in a controlled growth chamber, with a completely randomized design. A soil pH gradient ranging from 3.7 (Hunan) and 3.97 (Anhui) to 6.5, with three replications, was used as a treatment. Aluminium sulfate (Al2(SO4)3) and hydrated lime (Ca(OH)2) were used to obtain the target soil pH levels. Plant height, shoot dry weight, root dry weight, and chlorophyll content (SPAD value) of wheat and canola were adversely affected by soil acidity in both locations. The critical soil pH and AlKCl of the Ultisol from Hunan for wheat were 5.29 and 0.56 cmol kg−1, respectively. At Anhui, the threshold soil pH and AlKCl for wheat were 4.66 and 2.36 cmol kg−1, respectively. On the other hand, the critical soil pH for canola was 5.65 and 4.87 for the Ultisols from Hunan and Anhui, respectively. The critical soil exchangeable Al for canola cannot be determined from the experiment of this study. The results suggested that the critical soil pH and AlKCl varied between different locations for the same variety of crop, due to the different soil types and their other soil chemical properties. The critical soil pH for canola was higher than that for wheat for both Ultisols, thus canola was more sensitive to soil acidity. Therefore, we recommend that liming should be undertaken to increase soil pH if it falls below these critical soil pH levels for wheat and canola production.


2019 ◽  
Vol 6 (7) ◽  
pp. 181499 ◽  
Author(s):  
Shen Yan ◽  
Zhengyang Niu ◽  
Aigai Zhang ◽  
Haitao Yan ◽  
He Zhang ◽  
...  

Soil carbon reserves are the largest terrestrial carbon pools. Common agricultural practices, such as high fertilization rates and intensive crop rotation, have led to global-scale environmental changes, including decreased soil organic matter, lower carbon/nitrogen ratios and disruption of soil carbon pools. These changes have resulted in a decrease in soil microbial activity, severe reduction in soil fertility and transformation of soil nutrients, thereby causing soil nutrient imbalance, which seriously affects crop production. In this study, 16S rDNA-based analysis and static chamber-gas chromatography were used to elucidate the effects of continuous application of straw biochar on soil carbon pools and the soil microbial environments of two typical soil types (purple and paddy soils) in southern China. Application of biochar (1) improved the soil carbon pool and its activity, (2) significantly promoted the release of soil CO 2 and (3) improved the soil carbon environment. Soil carbon content was closely correlated with the abundance of organisms belonging to two orders, Lactobacillales and Bacteroidales, and, more specifically, to the genus Lactococcus . These results suggest that biochar affects the soil carbon environment and soil microorganism abundance, which in turn may improve the soil carbon pool.


2016 ◽  
Vol 20 (11) ◽  
pp. 4547-4559 ◽  
Author(s):  
La Zhuo ◽  
Mesfin M. Mekonnen ◽  
Arjen Y. Hoekstra

Abstract. Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF), and the consumption of irrigation water (blue WF) over the crop growing period varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961–2008, for rain-fed vs. irrigated croplands, for wet vs. dry years, for warm vs. cold years, for four different soil classes, and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arcmin resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961–2008, (ii) the WF benchmarks for irrigated winter wheat are 8–10 % larger than those for rain-fed winter wheat, (iii) WF benchmarks for wet years are 1–3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7–8 % smaller than for cold years, (v) WF benchmarks differ by about 10–12 % across different soil texture classes, and (vi) WF benchmarks for the humid zone are 26–31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t−1 for arid areas and 841 m3 t−1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.


1983 ◽  
Vol 3 (4) ◽  
pp. 377-384 ◽  
Author(s):  
K.P.R. Vittal ◽  
K. Vijayalakshmi ◽  
U.M.B. Rao

2020 ◽  
Vol 222 (2) ◽  
pp. 1213-1223
Author(s):  
Yan Han ◽  
Xiuming Liu ◽  
Guoyong Zhao ◽  
Zhenke Zhang ◽  
Bin Lü ◽  
...  

SUMMARY The loess from the northern piedmont of the Dabie Mountains is in a transition area between loess from the Chinese Loess Plateau, the Quaternary red soils of southern China and the Xiashu loess. Despite its significant location, the study has been inadequate. In this study, the Guangshan section in the northern piedmont of the Dabie Mountains was selected for investigation. Environmental magnetism, geochemistry, colour reflectance and optical diffuse reflection spectroscopy analyses were applied to detect the magnetic variations in the loess. The results showed that (1) the magnetic minerals consisted mainly of magnetite, maghemite, hematite and goethite, which are the same as those in the Quaternary loess from the Chinese Loess Plateau, the Xiashu loess and the Quaternary red soils of southern China. The average magnetic particles were in the pseudo-single domain, like those of the Chinese Loess Plateau loess. (2) Unit III of the Guangshan section (2.4–4 m), with high chemical index of alteration and low Ba-index, was demonstrated as the most strongly developed palaeosol in the whole section, in agreement with field observations (more Fe-Mn films and weakly vermiculated development). However, it exhibited minimal susceptibility values and the lowest concentration of fine ferrimagnetic minerals. Simultaneously, the unit had low hematite to goethite ratio (Hm/Gt), suggesting that the pedogenic environment was humid; and it also had high values of b* and Gt%, implying that there was more goethite. Therefore, we can conclude that excessive soil moisture and intensive pedogenesis dissolved the fine ferrimagnetic minerals originally produced by pedogenesis and transformed them into goethite. These results could help to trace the palaeoclimatic evolution of the study area and clarify the magnetic variations of loess in different climates throughout China.


2016 ◽  
Author(s):  
La Zhuo ◽  
Mesfin M. Mekonnen ◽  
Arjen Y. Hoekstra

Abstract. Meeting growing food demands while simultaneously shrinking the water footprint (WF) of agricultural production is one of the greatest societal challenges. Benchmarks for the WF of crop production can serve as a reference and be helpful in setting WF reduction targets. The consumptive WF of crops, the consumption of rainwater stored in the soil (green WF) and the consumption of irrigation water (blue WF) over the crop growing period, varies spatially and temporally depending on environmental factors like climate and soil. The study explores which environmental factors should be distinguished when determining benchmark levels for the consumptive WF of crops. Hereto we determine benchmark levels for the consumptive WF of winter wheat production in China for all separate years in the period 1961–2008, for rain-fed versus irrigated croplands, for wet versus dry years, for warm versus cold years, for four different soil classes and for two different climate zones. We simulate consumptive WFs of winter wheat production with the crop water productivity model AquaCrop at a 5 by 5 arc min resolution, accounting for water stress only. The results show that (i) benchmark levels determined for individual years for the country as a whole remain within a range of ±20 % around long-term mean levels over 1961–2008; (ii) the WF benchmarks for irrigated winter wheat are 8–10 % larger than those for rain-fed winter wheat; (iii) WF benchmarks for wet years are 1–3 % smaller than for dry years, (iv) WF benchmarks for warm years are 7–8 % smaller than for cold years, (v) WF benchmarks differ by about 10–12 % across different soil texture classes; and (vi) WF benchmarks for the humid zone are 26–31 % smaller than for the arid zone, which has relatively higher reference evapotranspiration in general and lower yields in rain-fed fields. We conclude that when determining benchmark levels for the consumptive WF of a crop, it is useful to primarily distinguish between different climate zones. If actual consumptive WFs of winter wheat throughout China were reduced to the benchmark levels set by the best 25 % of Chinese winter wheat production (1224 m3 t−1 for arid areas and 841 m3 t−1 for humid areas), the water saving in an average year would be 53 % of the current water consumption at winter wheat fields in China. The majority of the yield increase and associated improvement in water productivity can be achieved in southern China.


Sign in / Sign up

Export Citation Format

Share Document