Representation of Real-Valued Functions by a Three-Layered Artificial Neural Network with Topologically Ordered Input and Output Units

ICANN ’93 ◽  
1993 ◽  
pp. 818-821 ◽  
Author(s):  
Dieter Butz ◽  
Klaus Noack ◽  
Wilfried Brauer
2021 ◽  
Vol 11 (9) ◽  
pp. 3997
Author(s):  
Woraphon Yamaka ◽  
Rungrapee Phadkantha ◽  
Paravee Maneejuk

As the conventional models for time series forecasting often use single-valued data (e.g., closing daily price data or the end of the day data), a large amount of information during the day is neglected. Traditionally, the fixed reference points from intervals, such as midpoints, ranges, and lower and upper bounds, are generally considered to build the models. However, as different datasets provide different information in intervals and may exhibit nonlinear behavior, conventional models cannot be effectively implemented and may not be guaranteed to provide accurate results. To address these problems, we propose the artificial neural network with convex combination (ANN-CC) model for interval-valued data. The convex combination method provides a flexible way to explore the best reference points from both input and output variables. These reference points were then used to build the nonlinear ANN model. Both simulation and real application studies are conducted to evaluate the accuracy of the proposed forecasting ANN-CC model. Our model was also compared with traditional linear regression forecasting (information-theoretic method, parametrized approach center and range) and conventional ANN models for interval-valued data prediction (regularized ANN-LU and ANN-Center). The simulation results show that the proposed ANN-CC model is a suitable alternative to interval-valued data forecasting because it provides the lowest forecasting error in both linear and nonlinear relationships between the input and output data. Furthermore, empirical results on two datasets also confirmed that the proposed ANN-CC model outperformed the conventional models.


Micromachines ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 219 ◽  
Author(s):  
Guhyun Kim ◽  
Vladimir Kornijcuk ◽  
Dohun Kim ◽  
Inho Kim ◽  
Cheol Hwang ◽  
...  

An artificial neural network was utilized in the behavior inference of a random crossbar array (10 × 9 or 28 × 27 in size) of nonvolatile binary resistance-switches (in a high resistance state (HRS) or low resistance state (LRS)) in response to a randomly applied voltage array. The employed artificial neural network was a multilayer perceptron (MLP) with leaky rectified linear units. This MLP was trained with 500,000 or 1,000,000 examples. For each example, an input vector consisted of the distribution of resistance states (HRS or LRS) over a crossbar array plus an applied voltage array. That is, for a M × N array where voltages are applied to its M rows, the input vector was M × (N + 1) long. The calculated (correct) current array for each random crossbar array was used as data labels for supervised learning. This attempt was successful such that the correlation coefficient between inferred and correct currents reached 0.9995 for the larger crossbar array. This result highlights MLP that leverages its versatility to capture the quantitative linkage between input and output across the highly nonlinear crossbar array.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1338
Author(s):  
Arun George ◽  
Il-Hyoung Cho ◽  
Moo-Hyun Kim

A U-shaped oscillating water column (U-OWC) device has been investigated to enhance power extraction by placing the bottom-mounted vertical barrier in front of a conventional OWC. Then, the optimal design of a U-OWC device has been attempted by using an artificial neural network (ANN) model. First, the analytical model is developed by a matched eigenfunction expansion method (MEEM) based on linear potential theory. Using the developed analytical model, the input and output features for training an ANN model are identified, and then the database containing input and output features is established by a Latin hypercube sampling (LHS) method. With 200 samples, an ANN model is trained with the training data (70%) and validated with the remaining test data (30%). The predictions on output features are made for 4000 random combinations of input features for given significant wave heights and energy periods in irregular waves. From these predictions, the optimal geometric values of a U-OWC are determined by considering both the conversion efficiency and wave force on the barrier. It is found that a well-trained ANN model shows good prediction accuracy and provides the optimal geometric values of a U-OWC suitable for wave conditions at the installation site.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

1998 ◽  
Vol 49 (7) ◽  
pp. 717-722 ◽  
Author(s):  
M C M de Carvalho ◽  
M S Dougherty ◽  
A S Fowkes ◽  
M R Wardman

Sign in / Sign up

Export Citation Format

Share Document