Scanning Transmission Imaging in the SEM

Author(s):  
Charles E. Lyman ◽  
Joseph I. Goldstein ◽  
Alton D. Romig ◽  
Patrick Echlin ◽  
David C. Joy ◽  
...  
Author(s):  
Charles E. Lyman ◽  
Joseph I. Goldstein ◽  
Alton D. Romig ◽  
Patrick Echlin ◽  
David C. Joy ◽  
...  

Author(s):  
Charles E. Lyman ◽  
Joseph I. Goldstein ◽  
Alton D. Romig ◽  
Patrick Echlin ◽  
David C. Joy ◽  
...  

1995 ◽  
Vol 68 (2) ◽  
pp. 342-350 ◽  
Author(s):  
Paul E. F. Cudby ◽  
Barry A. Gilbey

Abstract A novel method for carrying out scanning transmission electron microscopy on a standard scanning electron microscope is described. This method involves the addition of a specially fabricated mount and is accomplished without carrying out any form of modification on the microscope. The method is compared to more conventional microscopy techniques and examples are given showing the advantages of this system.


2008 ◽  
Vol 14 (S2) ◽  
pp. 1212-1213
Author(s):  
N Erdman ◽  
CH Nielsen ◽  
CA Ackerley

Extended abstract of a paper presented at Microscopy and Microanalysis 2008 in Albuquerque, New Mexico, USA, August 3 – August 7, 2008


2009 ◽  
Author(s):  
Qi Li ◽  
Rui Yao ◽  
Qiguo Yin ◽  
Shenghui Ding ◽  
Qi Wang

Author(s):  
Charles E. Lyman ◽  
Joseph I. Goldstein ◽  
Alton D. Romig ◽  
Patrick Echlin ◽  
David C. Joy ◽  
...  

Author(s):  
A. V. Crewe

The high resolution STEM is now a fact of life. I think that we have, in the last few years, demonstrated that this instrument is capable of the same resolving power as a CEM but is sufficiently different in its imaging characteristics to offer some real advantages.It seems possible to prove in a quite general way that only a field emission source can give adequate intensity for the highest resolution^ and at the moment this means operating at ultra high vacuum levels. Our experience, however, is that neither the source nor the vacuum are difficult to manage and indeed are simpler than many other systems and substantially trouble-free.


Author(s):  
J. S. Wall ◽  
J. P. Langmore ◽  
H. Isaacson ◽  
A. V. Crewe

The scanning transmission electron microscope (STEM) constructed by the authors employs a field emission gun and a 1.15 mm focal length magnetic lens to produce a probe on the specimen. The aperture size is chosen to allow one wavelength of spherical aberration at the edge of the objective aperture. Under these conditions the profile of the focused spot is expected to be similar to an Airy intensity distribution with the first zero at the same point but with a peak intensity 80 per cent of that which would be obtained If the lens had no aberration. This condition is attained when the half angle that the incident beam subtends at the specimen, 𝛂 = (4𝛌/Cs)¼


Sign in / Sign up

Export Citation Format

Share Document