A Simple Proof of Frobenius Theorem

Author(s):  
Shiing-shen Chern
1981 ◽  
pp. 67-69 ◽  
Author(s):  
Shiing-shen Chern ◽  
Jon G. Wolfson

1976 ◽  
Vol 54 (1) ◽  
pp. 53-53 ◽  
Author(s):  
Robert E. Dressler ◽  
Ernest E. Shult

1989 ◽  
pp. 37-39
Author(s):  
Shiing-shen Chern ◽  
Jon G. Wolfson

2017 ◽  
Vol 60 (2) ◽  
pp. 411-421
Author(s):  
Luchezar Stoyanov

AbstractWe prove a comprehensive version of the Ruelle–Perron–Frobenius Theorem with explicit estimates of the spectral radius of the Ruelle transfer operator and various other quantities related to spectral properties of this operator. The novelty here is that the Hölder constant of the function generating the operator appears only polynomially, not exponentially as in previously known estimates.


2007 ◽  
Vol 14 (3) ◽  
pp. 543-564
Author(s):  
Yuri G. Reshetnyak

Abstract In the space , 𝑛-dimensional surfaces are considered having the parametrizations which are functions of the Sobolev class with 𝑝 > 𝑛. The first and the second fundamental tensor are defined. The Peterson–Codazzi equations for such functions are understood in some generalized sense. It is proved that if the first and the second fundamental tensor of one surface are close to the first and, respectively, to the second fundamental tensor of the other surface, then these surfaces will be close up to the motion of the space . A difference between the fundamental tensors and the nearness of the surfaces are measured with the help of suitable 𝑊-norms. The proofs are based on a generalization of Frobenius' theorem about completely integrable systems of the differential equations which was proved by Yu. E. Borovskiĭ. The integral representations of functions by differential operators with complete integrability condition are used, which were elaborated by the author in his other works.


2013 ◽  
Vol 36 (1-2) ◽  
pp. 165-170 ◽  
Author(s):  
Ira M. Gessel
Keyword(s):  

The Galerkin approximation to the Navier–Stokes equations in dimension N , where N is an infinite non-standard natural number, is shown to have standard part that is a weak solution. This construction is uniform with respect to non-standard representation of the initial data, and provides easy existence proofs for statistical solutions.


Sign in / Sign up

Export Citation Format

Share Document