Electron Density Analysis of the Antimicrobial Drug and Radiosensitizer Dimetridazole at 105 K

Author(s):  
Hendrik L. De Bondt ◽  
N. M. Blaton ◽  
O. M. Peeters ◽  
C. J. De Ranter ◽  
I. Kjøller Larsen
2005 ◽  
Vol 61 (4) ◽  
pp. 418-428 ◽  
Author(s):  
Adam I. Stash ◽  
Kiyoaki Tanaka ◽  
Kazunari Shiozawa ◽  
Hitoshi Makino ◽  
Vladimir G. Tsirelson

A topological analysis of the experimental electron density in racemic ethylenebis(1-indenyl)zirconium dichloride, C20H16Cl2Zr, measured at 100 (1) K, has been performed. The atomic charges calculated by the numerical integration of the electron density over the zero-flux atomic basins demonstrate the charge transfer of 2.25 e from the Zr atom to the two indenyl ligands (0.19 e to each) and two Cl atoms (0.93 e to each). All the atomic interactions were quantitatively characterized in terms of the electron density and the electronic energy-density features at the bond critical points. The Zr—C2 bond paths significantly curved towards the C1—C2 bond were found; no other bond paths connecting the Zr atom and indenyl ligand were located. At the same time, the π-electrons of the C1—C2 bond are significantly involved in the metal–ligand interaction. The electron density features indicate that the indenyl coordination can be approximately described as η1 with slippage towards η2. The `ligand-opposed' charge concentrations around the Zr atom were revealed using the Laplacian of the electron density and the one-particle potential; they were linked to the orbital representations. Bonds in the indenyl ligand were characterized using the Cioslowski–Mixon bond-order indices calculated directly from the experimental electron density.


2011 ◽  
Vol 11 (2) ◽  
pp. 597-611 ◽  
Author(s):  
A. M. Hasbi ◽  
M. A. Mohd Ali ◽  
N. Misran

Abstract. The paper investigates the ionospheric variations before some large earthquakes that occurred during 2004–2007 in Sumatra using GPS and CHAMP data. The TEC shows the occurrence of positive and negative anomalies detected within a few hours to 6 days before the earthquakes. These anomalies mostly occur during the daytime hours between 4 and 17 LT. The TEC anomalies are mostly consistent with the CHAMP satellite electron density data. The electron density analysis over the 28 March 2005 earthquake epicenter shows that an equatorial anomaly modification took place a few days before the event. The modification took shape in the form of crest amplification during the daytime. The comparison between the TEC and electron density measurements during very quiet geomagnetic conditions is shown to be a useful indicator of a forthcoming earthquake.


Sign in / Sign up

Export Citation Format

Share Document